Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. DOI: 10.12000/JR21197
Citation: Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091

Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar

DOI: 10.12000/JR14091
  • Received Date: 2014-06-10
  • Rev Recd Date: 2015-01-05
  • Publish Date: 2015-04-28
  • Multiple-Input Multiple-Output (MIMO) radar is an emerging radar system that is of great interest to military and academic organizations due to its advantages and extensive applications. The main purpose of Space-Time Adaptive Processing (STAP) is to suppress ground clutter and realize Ground Moving Target Indication (GMTI). Nowadays, STAP technology has been extended to MIMO radar systems, and MIMO radar STAP has quickly become a hot research topic in international radar fields. This paper provides a detailed description of the extension and significant meaning of MIMO-STAP, and gives an overview of the current research status of clutter modeling, analysis of clutter Degree Of Freedom (DOF), reduced-dimension (reduced-rank) processing, simultaneous suppression of clutter plus jamming, non-homogeneous environment processing, and so on. The future perspective for the development of MIMO-STAP technology is also discussed.

     

  • In recent years, Frequency Diverse Array (FDA) radar has received much attention due to its range-angle-time-dependent beampattern[1,2]. Combining the advantages of FDA and traditional phased array Multiple-Input Multiple-Output (MIMO) radar in the degree of freedom, the FDA Multiple-Input Multiple Output (FDA-MIMO) radar was proposed in Ref. [3] and applied in many fields[4-9]. For parameter estimation algorithm, the authors first proposed a FDA-MIMO target localization algorithm based on sparse reconstruction theory[10], and an unbiased joint range and angle estimation method was proposed in Ref. [11]. The work of Ref. [12] further proved that the FDA-MIMO is superior to traditional MIMO radar in range and angle estimation performance, and the authors of Ref. [13] introduced a super-resolution MUSIC algorithm for target location, and analyzed its resolution threshold. Meanwhile, high-resolution Doppler processing is utilized for moving target parameter estimation[14]. The Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and PARAllel FACtor (PARAFAC) was proposed in Ref. [15], which is a search-free algorithm for FDA-MIMO.

    Moreover, the research of conformal array has received more and more attention. Conformal array is a non-planar array that can be completely attached to the surface of the carrier[16]. It has significant advantages such as reducing the aerodynamic impact on the carrier and smaller radar cross section[17]. In addition, conformal array can achieve wide-angle scanning with a lower SideLobe Level (SLL)[18]. Different from traditional arrays, the element beampattern of conformal array needs to be modeled separately in the parameter estimation due to the difference of carrier curvature[19-21].

    As far as we know, most of the existing researches on FDA-MIMO are based on linear array, while there is little research on the combination of FDA-MIMO and conformal array[22]. In this paper, we replace the receiving array in the traditional FDA-MIMO with conformal array. Compared with conventional FDA-MIMO, conformal FDA-MIMO inherits the merits of conformal array and FDA-MIMO, which can effectively improve the stealth and anti-stealth performance of the carrier, and reduce the volume and the air resistance of the carrier. For conformal FDA-MIMO, we further study the parameters estimation algorithm. The major contributions of this paper are summarized as follows:

    (1) A conformal FDA-MIMO radar model is first formulated.

    (2) The parameter estimation Cramér-Rao Lower Bound (CRLB) for conformal FDA-MIMO radar is derived.

    (3) Inspired by the existing work of Refs. [23,24], a Reduced-Dimension MUSIC (RD-MUSIC) algorithm for conformal FDA-MIMO radar is correspondingly proposed to reduce the complexity.

    The rest of the paper consists of four parts. Section 2 formulates the conformal FDA-MIMO radar model, and Section 3 derives a RD-MUSIC algorithm for conformal FDA-MIMO radar. Simulation results for conformal FDA-MIMO radar with semi conical conformal receiving array are provided in Section 4. Finally, conclusions are drawn in Section 5.

    For the convenience of analysis, we consider a monostatic conformal FDA-MIMO radar which is composed by a M-element linear FDA transmitting array and a N-element conformal receiving array, as shown in Fig. 1. d denotes the inter-element spacing, the carrier frequency at the mth transmitting element is fm=f1+Δf(m1), m=1,2,,M where f1 is the transmission frequency of the first antenna element, which is called as reference frequency, and Δf is the frequency offset between the adjacent array elements.

    Figure  1.  Conformal FDA-MIMO radar

    The complex envelope of the transmitted signal of the mth transmitting element is denoted as φm(t), assume the transmitting waveforms have orthogonality,

    Tpφm(t)φm1(tτ)dt=0,m1m (1)

    where τ denotes the time delay, Tp denotes the pulse duration, and () is conjugate operator. The signal transmitted from the mth element can be expressed as

    sm(t)=am(t,θ,ϕ,r)φm(t),0tTp (2)

    where

    am(t,θ,ϕ,r)=exp{j2π((m1)Δfrcf1(m1)dsinαc(m1)Δft)} (3)

    is the mth element of the transmitting steering vector according to the phase difference between adjacent elements, the angle between far-field target and transmitting array is denoted as α=arcsin(sinθcosϕ), where arcsin() denotes arcsine operator, α can be calculated by using the inner product between the target vector and unit vector along the X-axis. θ,ϕ,r are the elevation, azimuth and range between the target and the origin point, respectively. The phase difference between adjacent elements is

    Δψt0=2π(Δfrcf1dsinαcΔft) (4)

    where c is light speed. For far-field target P(r,θ,ϕ), the transmitting steering vector is

    a0(t,θ,ϕ,r)=[1,exp{jΔψt0},,exp{j(M1)Δψt0}]T (5)

    For the conformal receiving array, as shown in Fig. 1(b), the time delay between target P(r,θ,ϕ) and the nth receiving array element is

    τn=rn/c (6)

    where rn is the range between target and the nth receiving array element. For far-field assumption, the rn can be approximated as

    rnrpnr (7)

    where r denotes the range between the target and the origin point, pn=xnex+yney+znez denotes the position vector from the nth element to origin point, and r=sinθcosϕex+sinθsinϕey+cosθez is the unit vector in target orientation, where ex,ey and ez are the unit vectors along the X- , Y- , and Z-axis, respectively. (xn,yn,zn) are the coordinates of the nth element in the Cartesian coordinate system. For simplicity, we let u=sinθcosϕ, v=sinθcosϕ, so the time delay τn=(r(uxn+vyn+cosθzn))/c. The time delay between the first element and the nth element at the receiving array is expressed as

    Δτrn=τ1τn=u(xnx1)+v(yny1)+cosθ(znz1)c (8)

    And the corresponding phase difference between the first element and the nth element is

    ΔψRn=2πf1Δτrn (9)

    Consequently, the receiving steering vector is

    b(θ,ϕ)=[r1(θ,ϕ),r2(θ,ϕ)exp(jΔψr2),,rN(θ,ϕ)exp(jΔψrN)]T (10)

    where rn(θ,ϕ) is the nth conformal receiving array element beampattern which should be designed in its own local Cartesian coordinate system. In this paper, we utilize Euler rotation method to establish transformation frame between local coordinate system and global coordinate system[25,26].

    Then the total phase difference between adjacent transmitting array elements can be rewritten as

    Δψt=2π(Δf2rcf1dsinαcΔft) (11)

    where the factor 2r in the first term represents the two-way transmission and reception, and the correspondingly transmitting steering vector is written as

    a(t,θ,ϕ,r)=[1,exp{jΔψt},,exp{j(M1)Δψt}]T (12)

    Assuming L far-field targets are located at (θi,ϕi,Ri), i=1,2,,L and snapshot number is K. After matched filtering, the received signal can be formulated as following matrix (13,14)

    X=AS+N (13)

    where the array manifold A is expressed as

    A=[at,r(θ1,ϕ1,r1),,at,r(θL,ϕL,rL)]=[b(θ1,ϕ1)a(θ1,ϕ1,r1),,b(θL,ϕL)a(θL,ϕL,rL)] (14)

    where at,r(θ,ϕ,r) is the joint transmitting-receiving steering vector, S=[s(t1),s(t2),,s(tK)]CL×K and NCMN×K denote the signal matrix and noise matrix, respectively, where noise follows the independent identical distribution, and denotes Kronecker product.

    a(θ,ϕ,r)=[1exp{j2π(2Δfrcf1dsinαc)}exp{j2π(M1)(2Δfrcf1dsinαc)}] (15)

    which can be expressed as

    a(θ,ϕ,r)=a(θ,ϕ)a(r) (16)

    where

    a(r)=[1,exp(j2π2Δfrc),,exp(j2π(M1)2Δfrc)]T (17)
    a(θ,ϕ)=[1,exp(j2πf1dsinαc),,exp[j2π(M1)f1dsinαc]]T (18)

    and represents Hadamard product operator.

    The CRLB can be obtained from the inverse of Fisher information matrix[27,28], which establishes a lower bound for the variance of any unbiased estimator. We employ the CRLB for conformal FDA-MIMO parameter estimation to evaluate the performance of some parameter estimation algorithms.

    The discrete signal model is

    x[k]=at,r(θ,ϕ,r)s[k]+N[k],k=1,2,,K (19)

    For the sake of simplification, we take at,r as the abbreviation of at,r(θ,ϕ,r).

    The Probability Distribution Function (PDF) of the signal model with K snapshots is

    p(x|θ,ϕ,r)=1(2πσ2n)K2exp(1σ2n(xat,rs)H(xat,rs)) (20)

    where x=[x(1),x(2),,x(K)] and s=[s(1),s(2),,s(K)].

    The CRLB matrix form of elevation angle, azimuth angle and range is given by Eq. (21), diagonal elements {Cθθ,Cϕϕ,Crr} represent CRLB of estimating elevation angle, azimuth angle and range, respectively.

    CRLB=[CθθCθϕCθrCϕθCϕϕCϕrCrθCrϕCrr]=FIM1=[F11F12F13F21F22F23F31F32F33] (21)

    The elements of Fisher matrix can be expressed as

    Fij=E[2ln(p(xθ,ϕ,r))xixj],i,j=1,2,3 (22)

    In the case of K snapshots, PDF can be rewritten as

    p(x|θ,ϕ,r)=Cexp{1σ2nKn=1(x[k]at,rs[k])H(x[k]at,rs[k])} (23)

    where C is a constant, natural logarithm of Eq. (23) is

    ln(p(x|θ,ϕ,r))=ln(C)1σ2nKk=1(x[k]at,rs[k])H(x[k]at,rs[k]) (24)

    where ln() represents the logarithm operator. The first entry of Fisher matrix can be expressed as

    F11=E[2ln(p(x|θ,ϕ,r))θ2] (25)

    Correspondingly, the first derivative of natural logarithm is given by

    ln(p(x|θ,ϕ,r))θ=1σ2nKk=1(xH[k]at,rθs[k]aHt,rθs[k]x[k]+aHt,rθat,rs2[n]a+aHt,rat,rθs2[n]) (26)

    Then we can obtain the second derivative of

    2ln(p(x|θ,ϕ,r))θ2=1σ2nKk=1(x[k]H2at,rθ2s[k]2aHt,rθ2s(k)x[k]+2aHt,rθ2at,rs[k]2+aHt,rθat,rθs[k]2+aHt,rθat,rθs[k]2+aHt,r2at,rθ2s[k]2) (27)

    And then we have

    Kk=1x[k]=Kk=1at,rs[k]+N[k]=at,r(θ,ϕ,r)Kk=1s[k] (28)

    and

    Kk=1s2[k]=Kvar(s[k])=Kσ2s (29)

    where var() is a symbol of variance. Therefore, the PDF after quadratic derivation can be written as

    E[2ln(p(x|θ,ϕ,r))θ2]=Kσ2sσ2n(aHt,rθat,rθ+aHt,rθat,rθ)=2Kσ2sσ2nat,rθ2 (30)

    where denotes 2-norm. Similarly, the other elements of the Fisher matrix can also be derived in the similar way, so the Fisher matrix can be expressed as

    CRLB1=FIM=2Kσ2sσ2n[aθ2FIM12FIM13FIM21aϕ2FIM23FIM31FIM32ar2] (31)

    where

    FIM12=12[aHt,rθat,rϕ+aHt,rϕat,rθ],
    FIM13=12[aHt,rθat,rr+aHt,rrat,rθ],
    FIM21=12[aHt,rϕat,rθ+aHt,rθat,rϕ],
    FIM23=12[aHt,rϕat,rr+aHt,rrat,rϕ],
    FIM31=12[aHt,rrat,rθ+aHt,rθat,rr],
    FIM32=12[aHt,rrat,rϕ+aHt,rϕat,rr],
    σ2sσ2n=SNR

    Finally, the CRLB of conformal FDA-MIMO can be calculated by the inverse of Fisher matrix.

    The covariance matrix of the conformal FDA-MIMO receiving signal can be written as

    RX=ARsAH+σ2IMN (32)

    where Rs represents the covariance matrix of transmitting signal, IMN denotes MN dimensional identity matrix. For independent target signal and noise, RX can be decomposed as

    RX=USΛSUHS+UnΛnUHn (33)

    The traditional MUSIC algorithm is utilized to estimate the three-dimensional parameters {θ,ϕ,r}, MUSIC spectrum can be expressed as

    PMUSIC(θ,ϕ,r)=1aHt,r(θ,ϕ,r)UnUHnat,r(θ,ϕ,r) (34)

    The target location can be obtained by mapping the peak indexes of MUSIC spectrum.

    Traditional MUSIC parameter estimation algorithm is realized by 3D parameter search, which has good performance at the cost of high computational complexity. When the angular scan interval is less than 0.1°, the running time of single Monte-Carlo simulation is in hours, which is unpracticable for us to analysis conformal FDA-MIMO estimation performance by hundreds of simulations.

    In order to reduce the computation complexity of the parameter estimation algorithm for conformal FDA-MIMO, we propose a RD-MUSIC algorithm, which has a significant increase in computing speed at the cost of little estimation performance loss.

    At first, we define

    V(θ,ϕ,r)=aHt,r(θ,ϕ,r)HUnUHnat,r(θ,ϕ,r)=[b(θ,ϕ)a(θ,ϕ,r)]HUnUHn[b(θ,ϕ)a(θ,ϕ,r)] (35)

    Eq. (35) can be further calculated by

    V(θ,ϕ,r)=aH(θ,ϕ,r)[b(θ,ϕ)IM]H×UnUHn[b(θ,ϕ)IM]a(θ,ϕ,r)=aH(θ,ϕ,r)Q(θ,ϕ)a(θ,ϕ,r) (36)

    where Q(θ,ϕ)=[b(θ,ϕ)IM]HUnUHn[b(θ,ϕ)IM],

    Eq. (36) can be transformed into a quadratic programming problem. To avoid a(θ,ϕ,r)=0M, we add a constraint eH1a(θ,ϕ,r)=1, where e1 denotes unit vector. As a result, the quadratic programming problem can be redefined as

    {min (37)

    The penalty function can be constructed as

    \begin{split} L(\theta ,\phi ,r) =& {{\boldsymbol{a}}^{\rm{H}}}(\theta ,\phi ,r){\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu \left({\boldsymbol{e}}_1^{\text{H}}{\boldsymbol{a}}(\theta ,\phi ,r) - 1\right) \\ \end{split} (38)

    where \mu is a constant, because {\boldsymbol{a}}\left( {\theta ,\phi ,r} \right) = {\boldsymbol{a}}\left( {\theta ,\phi } \right) \odot {\boldsymbol{a}}\left( r \right), so we can obtain

    \begin{split} \frac{{\partial L(\theta ,\phi ,r)}}{{\partial {\boldsymbol{a}}(r)}} =& 2{\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu {\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{e}}_{\boldsymbol{1}}^{} \end{split} (39)

    where {\rm{diag}}( \cdot ) denotes diagonalization.

    And then let \dfrac{{\partial L(\theta ,\phi ,r)}}{{\partial {\boldsymbol{a}}(r)}} = 0, we can get

    {\boldsymbol{a}}\left( r \right) = \varsigma {{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){\boldsymbol{e}}_1^{}./{\boldsymbol{a}}(\theta ,\phi ) (40)

    where \varsigma is a constant, ./ denotes the division of the corresponding elements, which is opposite of Hadamard product. Substituting the constraint {\boldsymbol{e}}_1^{\rm{H}}{\boldsymbol{a}}(\theta ,\phi ,r) = 1 into {\boldsymbol{a}}\left( r \right) , we can obtain \varsigma = 1/({\boldsymbol{e}}_1^{\rm{H}}{{\boldsymbol{Q}}^{ - 1}} \cdot(\theta ,\phi ){\boldsymbol{e}}_1 ), then {\boldsymbol{a}}\left( r \right) can be expressed as

    {\boldsymbol{a}}\left( r \right) = \frac{{{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}{{{\boldsymbol{e}}_1^{\rm{H}}{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}./{\boldsymbol{a}}\left( {\theta ,\phi } \right) (41)

    Substituting {\boldsymbol{a}}\left( r \right) into Eq. (37), the target azimuths and elevations can be estimated by searching two-dimensional azimuth-elevation spectrum,

    \begin{split} \hfill \lt \hat \theta ,\hat \phi \gt =& {\text{arg}}\mathop {\min }\limits_{\theta ,\phi } \frac{1}{{{\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}}}} \\ =& {\text{arg}}\mathop {\max }\limits_{\theta ,\phi } {\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}} \end{split} (42)

    Given azimuth-elevation estimations obtained by mapping the L peak points, the range information can be obtained by searching range-dimensional spectrum,

    P\left({\hat \theta _i},{\hat \phi _i},r\right){\text{ }} = \frac{1}{{{\boldsymbol{a}}_{t,r}^{\rm{H}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right){{\boldsymbol{U}}_n}{\boldsymbol{U}}_n^{\rm{H}}{{\boldsymbol{a}}_{t,r}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right)}} (43)

    For conformal array, different array layouts produce different element patterns. We select the semi conical conformal array which is shown in Fig. 2 as the receiving array for the following simulation.

    Figure  2.  Conformal FDA-MIMO semi conical receiving array

    The simulation parameters are provided as follows: M = 10,N = 7,{f_1} = 10\;{\rm{GHz}},\Delta f = 3\;{\rm{kHz}}, d = \lambda /2 = c/2{f_1} and c = 3 \times {10^8}\;{\rm{m}}/{\rm{s}}.

    We first analyze the computational complexity of the algorithms in respect of the calculation of covariance matrix, the eigenvalue decomposition of the matrix and the spectral search. The main complexity of the MUISC algorithm and our proposed RD-MUISC algorithm are respectively as

    O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{\eta _3}{({MN})^2} \right) (44)
    O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{({MN})^2} + L{\eta _3}{({MN})^2}\right) (45)

    Where K and L denote snapshot number and signal sources number, {\eta _1},{\eta _2} and {\eta _3} represent search number in three-dimensional parameter \theta ,\phi ,r , respectively.

    From Eq. (44) and Eq. (45), we can see that the main complexity reduction of the RD-MUSIC algorithm lies in the calculation of the spectral search function. With the increase of the search accuracy, the complexity reduction is more significant.

    The computational complexity of algorithms is compared in Fig. 3. It can be seen from Fig. 3 that the difference of computational complexity between the two algorithms gradually increases with the increase of search accuracy. In the case of high accuracy, the computational efficiency of RD-MUSIC algorithm can reach more than {10^3} times of the traditional MUSIC algorithm. The simulation results show that RD-MUSIC algorithm has advantage in computing efficiency for conformal FDA-MIMO.

    Figure  3.  Comparison of computational complexity under different scan spacing

    In order to illustrate the effectiveness of the RD-MUSIC algorithm for a single target which is located at ({30^\circ },{20^\circ },10\;{\rm{km}}), we first give the parameter estimation probability of success with 1000 times Monte Carlo simulation, as shown in Fig. 4, the criterion of successful estimation is defined as the absolute difference between the estimation value and the actual value is less than a designed threshold \varGamma . More specifically, the criterion is \left| {\hat \theta - \theta } \right| < {\varGamma _\theta },\left| {\hat \phi - \phi } \right| < {\varGamma _\phi },\left| {\hat r - r} \right| < {\varGamma _r} , and suppose {\varGamma _\theta } = \varGamma \times {1^\circ },{\varGamma _\phi } = \varGamma \times {1^\circ },{\varGamma _r} = \varGamma \times 100\;{\rm{m}}, in the simulation, as well as the search paces are set as \left[ {{{0.05}^\circ },{{0.05}^\circ },0.05\;{\rm{km}}} \right], respectively. From Fig. 4, we can see that the probability of success gets higher as \varGamma gets bigger, which is consistent with expected.

    Figure  4.  The parameter estimation probability of RD-MUSIC algorithm with different thresholds

    Then, we consider the single target parameter estimation performance, Fig. 5 shows the RMSE of different algorithms with the increase of SNR under 200 snapshots condition, and Fig. 6 demonstrates the RMSE of different algorithms with the increase of snapshot number when SNR=0 dB. As shown in Fig. 5 and Fig. 6, the RMSEs of conformal FDA-MIMO gradually descend with the increasing of SNRs and snapshots, respectively. At the same time, the performance of traditional algorithm is slightly higher than RD-MUSIC algorithm. When the number of snapshots is more than 200, the difference of RMSEs is less than {10^{ - 1}} . Therefore, the performance loss of RD-MUSIC algorithm is acceptable compared with the improved computational speed. Note that, here we set 100 times Monte Carlo simulation to avoid running too long.

    Figure  5.  The RMSE versus snapshot for single target case
    Figure  6.  The RMSE versus SNR for two targets case

    Without loss of generality, we finally consider two targets which are located at ({30^\circ },{20^\circ }, 10\;{\rm{km}}) and ({30^\circ },{20^\circ },12\;{\rm{km}}), respectively, the remaining parameters are the same as single target case. Fig. 7 and Fig. 8 respectively show the RMSE of different algorithms with the increase of SNR and snapshot number in the case of two targets.

    Figure  7.  The RMSE versus snapshot for two targets case
    Figure  8.  The RMSE versus snapshot for two targets case

    It can be seen from Fig. 7 that the RMSE curve trend of angle estimation is consistent with that of single target case. The performance of traditional MUSIC algorithm is slightly better than that of RD-MUSIC algorithm. In the range dimension, the performance of traditional algorithm hardly changes with SNR, and RD-MUSIC algorithm is obviously better than traditional MUSIC algorithm. The proposed RD-MUSIC algorithm first estimates the angles, and then estimates the multiple peaks from range-dimensional spectrum, which avoids the ambiguity in the three-dimensional spectral search. Therefore, the RD-MUSIC algorithm has better range resolution for multiple targets estimation.

    In this paper, a conformal FDA-MIMO radar is first established, and the corresponding signal receiving mathematical model is formulated. In order to avoid the computational complexity caused by three-dimensional parameter search of MUSIC algorithm, we propose a RD-MUSIC algorithm by solving a quadratic programming problem. Simulation results show that the RD-MUSIC algorithm has comparative angle estimation performance with that of traditional MUSIC algorithm while greatly reducing the computation time. And the RD-MUSIC algorithm has better range estimation performance for multiple targets.

  • [1]
    Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 237-252.
    [2]
    Ward J. Space-time adaptive processing for airborne radar[R]. Technical Report 1015, MIT Lincoln Laboratory, 1994.
    [3]
    Guerci J R. Space Time Adaptive Processing for Radar[M]. Norwood, MA: Artech House, Inc., 2003: 3-55.
    [4]
    Klemm R. Principles of Space-Time Adaptive Processing[M]. London: The Institution of Electrical Engineers, 2002: 5-45.
    [5]
    Melvin W L. A STAP overview[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 19-35.
    [6]
    王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000: 1-9. Wang Yong-liang and Peng Ying-ning. Space-time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000: 1-9.
    [7]
    吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工业出版社, 2007: 228-256. Wu Shun-jun and Mei Xiao-chun. Radar Signal Processing and Data Processing Technology[M]. Beijing: Electronics Industry Press, 2007: 228-256.
    [8]
    王永良, 李天泉. 机载雷达空时自适应信号处理技术回顾与展望[J]. 中国电子科学研究院学报, 2008, 3(3): 271-275. Wang Yong-liang and Li Tian-quan. Overview and outlook of space-time adaptive processing for airborne radar[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(3): 271-275.
    [9]
    Li Jian and Stoica P. MIMO Radar Signal Processing[M]. Hoboken, NJ: John Wiley Sons, Inc., 2009, Chapter 2.
    [10]
    陈浩文, 黎湘, 庄钊文. 一种新兴的雷达体制MIMO雷达[J]. 电子学报, 2012, 40(6): 1190-1198. Chen Hao-wen, Li Xiang, and Zhuang Zhao-wen. A rising radar systemMIMO radar[J]. Acta Electronica Sinica, 2012, 40(6): 1190-1198.
    [11]
    Fisher E, Haimovich A, and Blum R S. Spatial diversity in radar-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.
    [12]
    Haimovich A M, Blum R S, and Lenard J. MIMO radar with widely separated antennas[J]. IEEE Signal Process Magazine, 2008, 25(1): 116-129.
    [13]
    Li J and Stoica P. MIMO radar with collocated antennas[J]. IEEE Signal Process Magazine, 2007, 24(5): 106-114.
    [14]
    Fenders G P and Manickam A. Aircraft MIMO radar[P]. U.S. Patent No. US 8, 570, 210 B1, Oct. 29, 2013.
    [15]
    Bliss D W and Forsythe K W. Multiple-input multipleoutput (MIMO) radar and imaging: degrees of freedom and resolution[C]. Conference Record of the 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 54-59.
    [16]
    Xue M, Vu D, Xu L, et al.. On MIMO radar transmission schemes for ground moving target indication[C]. The 2009 IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2009: 1171-1175.
    [17]
    Kantor J and Davis S. Airborne GMTI using MIMO techniques[C]. IEEE Radar Conference, Washington DC, USA, 2010: 1344-1349.
    [18]
    Chen C Y and Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623-634.
    [19]
    Wu Y, Tang J, and Peng Y N. Models and performance evaluation for multiple-input multiple-output space-time adaptive processing radar[J]. IET Radar, Sonar Navigation, 2009, 3(6): 569-582.
    [20]
    严韬, 谢文冲, 王永良. 机载MIMO 雷达杂波建模及杂波特性分析[J]. 雷达科学与技术, 2010, 8(4): 289-295. Yan Tao, Xie Wen-chong, and Wang Yong-liang. Model and clutter characteristics analysis for airborne MIMO radar[J]. Radar Science and Technology, 2010, 8(4): 289-295.
    [21]
    Li Y Z, He Z S, Li J, et al.. A model of non-coherent airborne MIMO space time adaptive processing radar[C]. IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, 2010: 1-4.
    [22]
    Mecca V F, Ramakrishnan D, and Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. Proceedings of the 4th IEEE Workshop on Sensor Array and Multichannel Signal Processing, Waltham, USA, 2006: 249-253.
    [23]
    Mecca V F, Krolik J L, and Robey F C. Beamspace slow-time MIMO radar for multipath clutter mitigation[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Las Vegas, USA, 2008: 2313-2316.
    [24]
    Wang G H and Lu Y L. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938-943.
    [25]
    张西川, 谢文冲, 张永顺, 等. 任意波形相关性的机载MIMO 雷达杂波建模与分析[J]. 电子与信息学报, 2011, 33(3): 646-651. Zhang Xi-chuan, Xie Wen-chong, Zhang Yong-shun, et al.. Modeling and analysis of the clutter on airborne MIMO radar with arbitrary waveform correlation[J]. Journal of Electronic Information Technology, 2011, 33(3): 646-651.
    [26]
    张西川, 张永顺, 谢文冲, 等. 机载相干MIMO 雷达杂波自由度估计研究[J]. 电子与信息学报, 2011, 33(9): 2125-2131. Zhang Xi-chuan, Zhang Yong-shun, Xie Wen-chong, et al.. Research on the estimation of clutter rank for coherent airborne MIMO radar[J]. Journal of Electronic Information Technology, 2011, 33(9): 2125-2131.
    [27]
    Xie Wen-chong, Zhang Xi-chuan, Wang Yong-liang, et al.. Estimation of clutter degrees of freedom for airborne multiple-input multiple-output-phased array radar[J]. IET Radar, Sonar Navigation, 2013, 7(6): 652-657.
    [28]
    Feng Cun-qian, Zhang Lin-rang, Zhang Dong, et al.. Clutter rank estimation rule for MIMO radar with arbitrary transmitted waveform synthetic strategies[J]. Electronics Letters, 2013, 49(18): 1180-1181.
    [29]
    Zhang W, Li J, Lin H, et al.. Estimation of clutter rank of MIMO radar in case of subarraying[J]. Electronics Letters, 2011, 47(11): 671-673.
    [30]
    Chin Yuan-chong. Clutter rank for slow-time MIMO STAP[C]. Proceedings of the 9th European Radar Conference, Amsterdam, Netherlands, 2012: 54-56.
    [31]
    Zeng J K, He Z S, and Liu B. Adaptive space-time-waveform processing for MIMO radar[C]. Proceedings of the International Conference on Communications, Circuits and Systems, Kokura, Japan, 2008: 641-643.
    [32]
    Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
    [33]
    吕晖, 冯大政, 和洁, 等. 一种简化的机载MIMO 雷达杂波特征相消器[J]. 航空学报, 2011, 32(5): 866-870. Lv Hui, Feng Da-zheng, He Jie, et al.. A simplified eigencanceler for airborne MIMO radar clutter suppression[J]. Acta Aeronauica et Astronautica Sinica, 32(5): 866-870.
    [34]
    翟伟伟, 张弓, 刘文波. 基于杂波子空间估计的MIMO 雷达降维STAP 研究[J]. 航空学报, 2010, 31(9): 1824-1831. Zhai Wei-wei, Zhang Gong, and Liu Wen-bo. Study of reduced-rank STAP based on estimation of clutter subspace for MIMO radar[J]. Acta Aeronauica et Astronautica Sinica, 2010, 31(9): 1824-1831.
    [35]
    张筱, 吴军, 彭芳. 基于扁长椭球波函数的机载多输入多输出雷达降维自适应处理算法研究[J]. 科学技术与工程, 2014, 14(3): 186-189. Zhang Xiao, Wu Jun, and Peng Fang. Study of reduceddimension STAP based on PSWF for airborne MIMO radar[J]. Science Technology and Engineering, 2014, 14(3): 186-189.
    [36]
    陆达, 张弓. 知识辅助的机载MIMO 雷达降秩STAP 算法[J]. 数据采集与处理, 2012, 27(4): 429-435. Lu D and Zhang G. Knowledge-aided reduced-rank STAP algorithm for airborne MIMO radar[J]. Journal of Data Acquisition Processing, 2012, 27(4): 429-435.
    [37]
    Xiang C, Feng D Z, and L H. Three-dimensional reduced-dimension transformation for MIMO radar spacetime adaptive processing[J]. Signal Processing, 2011, 91(8): 2121-2126.
    [38]
    冯大政, 向聪, 李倩, 等. 基于三迭代的机载MIMO 雷达空时降维自适应处理方法[P]. 中国专利: CN 101887117 A. 2010. 11. 17. Feng Da-zheng, Xiang Cong, Li Qian, et al.. Reduced-dimension STAP for airborne MIMO radar based on tri-iterative algorithm[P]. Chinese Patent, No. CN 101887117 A, 2010. 11. 17.
    [39]
    和洁, 冯大政, 向聪, 等. 机载MIMO 雷达降维空时自适应处理算法[J]. 电子科技大学学报, 2012, 41(1): 31-35. He Jie, Feng Da-zheng, Xiang Cong, et al.. Reduceddimension STAP for airborne MIMO radars[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(1): 31-35.
    [40]
    吕晖, 冯大政, 和洁, 等. 机载MIMO 雷达两级降维杂波抑制方法[J]. 电子与信息学报, 2011, 33(4): 805-809. Lv Hui, Feng Da-zheng, He Jie, et al.. Two-stage reduceddimension clutter suppression method for airborne MIMO radar[J]. Journal of Electronic Information Technology, 2011, 33(4): 805-809.
    [41]
    王珽, 张剑云, 郑志东. 机载MIMO 雷达两级降维空时自适应处理方法[J]. 数据采集与处理, 2014, 29(4): 542-548. Wang Ting, Zhang Jian-yun, and Zheng Zhi-dong. Two-stage reduced-dimension STAP method for airborne MIMO radar[J]. Journal of Data Acquisition and Processing, 2014, 29(4): 542-548.
    [42]
    李彩彩, 廖桂生, 朱圣棋, 等. MIMO 雷达子阵级m-Capon 方法研究[J]. 系统工程与电子技术, 2011, 32(6): 1117-1120. Li Cai-cai, Liao Gui-sheng, Zhu Sheng-qi, et al.. Study of subarray domain m-Capon method for MIMO radar[J]. System Engineering and Electronics, 2011, 32(6): 1117-1120.
    [43]
    郝琳, 张永顺, 李哲. 机载MIMO 雷达3-CAP 杂波抑制方法[J]. 空军工程大学学报(自然科学版), 2014, 15(4): 51-55. Hao Lin, Zhang Yong-shun, and Li Zhe. 3-CAP clutter suppression method research for airborne radar[J]. Journal of Air Force Engineering University (Natural Science Edition), 2014, 15(4): 51-55.
    [44]
    吕晖, 冯大政, 和洁, 等. 机载多输入多输出雷达局域化降维杂波抑制方法[J]. 西安电子科技大学学报, 2011, 38(2): 88-92. Lv Hui, Feng Da-zheng, He Jie, et al.. Localized reduceddimension clutter suppression method for airborne MIMO radar[J]. Journal of Xidian University, 2011, 38(2): 88-92.
    [45]
    赵军. 机载MIMO 雷达空时自回归算法[J]. 空军第一航空学院学报, 2012, 20(2): 6-10. Zhao Jun. A space-time autoaggressive method for airborne MIMO radar[J]. Journal of the First Aeronautic Institute of the Air Force, 2012, 20(2): 6-10.
    [46]
    Fa R and Lamare R C. Knowledge-aided reduced-rank STAP for MIMO radar based on joint iterative constrained optimization of adaptive filters with multiple constraints[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Dallas, USA, 2010: 2762-2765.
    [47]
    Fa R, Lamare R C, and Clarke P. Reduced-rank STAP for MIMO radar based on joint iterative optimization of knowledge-aided adaptive filters[C]. 2009 Asilomar Conference, Pacific Grove, USA, 2009: 496-500.
    [48]
    Marcos S. Range recursive space time adaptive processing (STAP) for MIMO airborne radar[C]. Proceedings of the 17th European Signal Processing Conference, Glasgow, Scotland, 2009: 592-596.
    [49]
    杨晓超, 刘宏伟, 王勇, 等. 有源干扰条件下机载MIMO 雷达 STAP 协方差矩阵秩的分析[J]. 电子与信息学报, 2012, 34(7): 1616-1622. Yang Xiao-chao, Liu Hong-wei, Wang Yong, et al.. STAP covariance matrix rank analysis for airborne MIMO radar in the presence of jammers[J]. Journal of Electronics Information Technology, 2012, 34(7): 1616-1622.
    [50]
    杨晓超, 刘宏伟, 王勇, 等. 一种两级机载MIMO 雷达空时自适应处理方法[J]. 电子与信息学报, 2012, 34(5): 1102-1108. Yang Xiao-chao, Liu Hong-wei, Wang Yong, et al.. A novel two-stage space-time adaptive processing method for airborne MIMO radar[J]. Journal of Electronics Information Technology, 2012, 34(5): 1102-1108.
    [51]
    高伟, 黄建国, 王海强, 等. 基于子空间估计的MIMO 阵列降维STAP 方法[J]. 系统工程与电子技术, 2012, 34(5): 876-881. Gao Wei, Huang Jian-guo, Wang Hai-qiang, et al.. Reducedrank STAP method for MIMO array based on estimation of subspace[J]. System Engineering and Electronics, 2012, 34(5): 876-881.
    [52]
    杨晓超, 刘宏伟, 王勇, 等. 利用多输入多输出雷达低秩杂波的降维空时自适应算法[J]. 西安交通大学学报, 2012, 46(8): 76-81. Yang Xiao-chao, Liu Hong-wei, Wang Yong, et al.. A new reduced dimensional space-time adaptive processing algorithm exploiting low-rank clutter for multiple-input multiple-output radar[J]. Journal of Xian Jiaotong University, 2012, 46(8): 76-81.
    [53]
    王珽, 张剑云, 郑志东. 有源干扰条件下机载MIMO 雷达降维STAP 方法[J]. 现代雷达, 2013, 35(8): 37-42. Wang Ting, Zhang Jian-yun, and Zheng Zhi-dong. A reduced-rank STAP method for airborne MIMO radar under jamming condition[J]. Modern Radar, 2013, 35(8): 37-42.
    [54]
    郑焱. MIMO 雷达中的空时自适应处理(STAP)技术[D]. [硕士论文], 南京: 南京邮电大学, 2010. Zheng Yan. Space Time Adaptive Processing (STAP) technology for MIMO radar[D]. [Master dissertation], Nanjing: Nanjing University of Posts and Telecommunications, 2010.
    [55]
    李彩彩, 廖桂生, 朱圣棋, 等. 一种抑制严重非均匀杂波的机载MIMO-STAP 方法[J]. 电子学报, 2011, 39(3): 511-517. Li Cai-cai, Liao Gui-sheng, Zhu Sheng-qi, et al.. An airborne MIMO-STAP method for severely non-homogeneous clutter suppression[J]. Acta Electronica Sinica, 2011, 39(3): 511-517.
    [56]
    Ahmadi M and Mohamed-pour K. Space-time adaptive processing for phased-multiple-input-multiple-output radar in the non-homogeneous clutter environment[J]. IET Radar, Sonar Navigation, 2014, 8(6): 585-596.
    [57]
    Chong C Y, Pascal F, and Lesturgie M. Estimation performance of coherent MIMO-STAP using Cramr-Rao bounds[C]. IEEE Radar Conference, Kansas City, USA, 2011: 533-537.
    [58]
    邹博, 董臻, 梁甸农. 基于STFAP 的MIMO 雷达运动目标参数估计的CRB 研究[J]. 电子与信息学报, 2011, 33(8): 1988-1992. Zou Bo, Dong Zhen, and Liang Dian-nong. Research on CRB for moving target parameter estimation in MIMO radar based on STFAP[J]. Journal of Electronics Information Technology, 2011, 33(8): 1988-1992.
    [59]
    刘晓莉. MIMO 雷达参数估计方法研究[D]. [博士论文], 西安: 西安电子科技大学, 2011. Liu Xiao-li. Study on parameters estimation of MIMO radar[D]. [Ph.D. dissertation], Xian: Xidian University, 2011.
    [60]
    Wang H Y, Liao G S, Li J, et al.. Waveform optimization for MIMO-STAP to improve the detection performance[J]. Signal Processing, 2011, 91(11): 2690-2696.
    [61]
    Wang Hong-yan, Liao Gui-sheng, Li Jun, et al.. Robust waveform design for MIMO-STAP to improve the worst-case detection performance[J]. EURASIP Journal on Advances in Signal Processing, 2013, 52: 1-8.
    [62]
    李军, 党博, 刘长赞, 等. 利用发射角度的双基地MIMO 雷达杂波抑制方法[J]. 雷达学报, 2014, 3(2): 208-216. Li Jun, Dang Bo, Liu Chang-zan, et al.. Bistatic MIMO radar clutter suppression by exploiting the transmit angle[J]. Journal of Radars, 2014, 3(2): 208-216.
    [63]
    Li J, Liao G S, and Griffiths H. Bistatic MIMO radar space-time adaptive processing[C]. IEEE Radar Conference, Kansas City, USA, 2011: 498-501.
    [64]
    Li J, Liao G S, and Griffiths H. Range-dependent clutter cancellation method in bistatic MIMO-STAP radars[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 59-62.
    [65]
    李军, 柴睿, 廖桂生. 基于MIMO 的双基地雷达地面动目标检测方法[P]. 中国专利: CN 102156279 A. 2011. 08.07. Li Jun, Chai Rui, and Liao Gui-sheng. Bistatic radar ground moving target indication method based on MIMO (Multiple Input Multiple Output)[P]. Chinese Patent, No. 102156279 A. 2011. 08.07.
    [66]
    李军, 李焕, 廖桂生. 基于双基地多输入多输出雷达的杂波抑制方法[P]. 中国专利: CN 102520395 A. 2012. 06.27. Li Jun, Li Huan, and Liao Gui-sheng. Clutter suppression method based on bistatic multiple-input and multiple-output radar[P]. Chinese Patent, No. CN 102520395 A. 2012. 06.27.
    [67]
    党博, 廖桂生, 李军, 等. 基于投影权优化的双基地MIMO 雷达杂波抑制方法[J]. 电子与信息学报, 2013, 35(10): 2505-2511. Dang Bo, Liao Gui-sheng, Li Jun, et al.. Weighted projection optimization for range-dependent clutter suppression in bistatic MIMO radar[J]. Journal of Electronics Information Technology, 2013, 35(10): 2505-2511.
    [68]
    Hassanien A and Vorobyov S A. Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2669-2682.
    [69]
    Khabbazibasmenj A, Hassanien A, Vorobyov S A, et al.. Efficient transmit beamspace design for search-free based DOA estimation in MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1490-1500.
    [70]
    郑志东, 张剑云, 杨瑛. 基于发射波束域-平行因子分析的 MIMO 雷达收发角度估计[J]. 电子与信息学报, 2011, 33(12): 2875-2880. Zheng Zhi-dong, Zhang Jian-yun, and Yang Ying. Joint DOD-DOA estimation of MIMO radar based on transmit beamspace-PARAFAC[J]. Journal of Electronics Information Technology, 2011, 33(12): 2875-2880.
    [71]
    洪振清, 张剑云. 基于发射波束域预处理的MIMO 雷达 MVDR 波束形成算法[J]. 系统仿真学报, 2013, 25(4): 722-731. Hong Zhen-qing and Zhang Jian-yun. MVDR beamforming algorithm based on beamspace preprocessing for MIMO radar[J]. Journal of System Simulation, 2013, 25(4): 722-731.
    [72]
    Hassanien A and Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3137-3151.
    [73]
    Stoica P, Li J, Zhu X M, et al.. On using a priori knowledge in space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 437-444.
    [74]
    Zhu X M, Li J, and Stoica P. Knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1325-1336.
    [75]
    范西昆, 曲毅. 知识辅助机载雷达杂波抑制方法研究进展[J]. 电子学报, 2012, 40(6): 1199-1206. Fan Xi-kun and Qu Yi. An overview of knowledge-aided clutter mitigation methods for airborne radar[J]. Acta Electronica Sinica, 2012, 40(6): 1199-1206.
    [76]
    刘聪锋. 稳健的自适应波束形成与空时自适应处理算法研究[D].[博士论文], 西安: 西安电子科技大学, 2008. Liu Cong-feng. Research on robust adaptive beamforming and space-time adaptive preprocessing algorithms[D]. [Ph.D. dissertation], Xian: Xidian University, 2008.
    [77]
    Xiang Cong, Feng Da-zheng, L Hui, et al.. Robust adaptive beamforming for MIMO radar[J]. Signal Processing, 2010, 90(12): 3185-3196.
    [78]
    Zhang Wei, Wang Ju, and Wu Si-liang. Robust minimum variance multiple-input multiple-output radar beamformer[J]. IET Signal Processing, 2013, 7(9): 854-862.
    [79]
    Yang X P, Liu Y X, and Long T. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing[J]. IET Radar, Sonar Navigation, 2013, 7(1): 47-54.
    [80]
    周宇, 张林让, 刘楠, 等. 空时自适应处理中基于知识的训练样本选择策略[J]. 系统工程与电子技术, 2010, 32(2): 405-409. Zhou Yu, Zhang Lin-rang, Liu Nan, et al.. Knowledge aided secondary data selection in space time adaptive processing[J]. System Engineering and Electronics, 2010, 32(2): 405-409.
    [81]
    阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194-1204. Yang Zhao-cheng, Li Xiang, and Wang Hong-qiang. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194-1204.
    [82]
    马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217-227. Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, et al.. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-227.
    [83]
    孙珂, 张颢, 李刚, 等. 基于稀疏恢复的直接数据域STAP 算法[J]. 清华大学学报(自然科学版), 2011, 51(7): 972-976. Sun Ke, Zhang Hao, Li Gang, et al.. Direct data domain STAP algorithm using sparse recovery[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(7): 972-976.
    [84]
    孙珂, 张颢, 李刚, 等. 基于杂波谱稀疏恢复的空时自适应处理[J]. 电子学报, 2011, 39(6): 1389-1393. Sun Ke, Zhang Hao, Li Gang, et al.. STAP via sparse recovery of clutter spectrum[J]. Acta Electronica Sinica, 2011, 39(6): 1389-1393.
    [85]
    Sun K, Meng H D, Lapierre F D, et al.. Registration-based compensation using sparse representation in conformal-array STAP[J]. Signal Processing, 2011, 91(10): 2268-2276.
    [86]
    Sun K, Meng H D, Wang Y L, et al.. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222-2236.
    [87]
    Chen C Y and Vaidyanathan P P. Minimum redundancy MIMO radars[C]. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Seattle, USA, 2008: 45-48.
    [88]
    洪振清, 张剑云, 梁浩, 等. 最小冗余MIMO雷达阵列设计[J]. 数据采集与处理, 2013, 28(4): 471-477. Hong Zhen-qing, Zhang Jian-yun, Liang Hao, et al.. Minimum redundancy MIMO radars array design[J]. Journal of Data Acquisition Processing, 2013, 28(4): 471-477.
    [89]
    王伟, 马跃华, 王咸鹏. 低冗余度多输入多输出雷达阵列结构设计[J]. 电波科学学报, 2012, 27(5): 968-972. Wang Wei, Ma Yue-hua, and Wang Xian-peng. Lowredundancy MIMO radar array structure design[J]. Chinese Journal of Radio Science, 2012, 27(5): 968-972.
    [90]
    Park H R, Kwak Y K, and Wang H. Efficient joint polarization space-time processor for nonhomogeneous clutter environments[J]. Electronics Letters, 2002, 38(25): 1714-1715.
    [91]
    Park H R and Wang H. Adaptive polarization-space-time domain radar target detection in inhomogeneous clutter environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(1): 35-43.
    [92]
    Wu D J, Xu Z H, Zhang L, et al.. Polarization-space-time adaptive processing for clutter suppression in airborne radar systems[C]. IEEE Second International Conference on Digital Manufacturing and Automation, Zhangjiajie, 2011: 855-858.
    [93]
    杜文韬, 廖桂生, 杨志伟. 极化空时自适应处理性能分析[J]. 西安电子科技大学学报(自然科学版), 2014, 41(1): 1-5. Du Wen-tao, Liao Gui-sheng, and Yang Zhi-wei. Performance analysis of the polarization-space-time adaptive processing[J]. Journal of Xidian University (Natural Science Edition), 2014, 41(1): 1-5.
    [94]
    吴迪军, 徐振海, 熊子源, 等. 机载雷达极化空时联合域杂波抑制性能分析[J]. 电子学报, 2012, 40(7): 1429-1433. Wu Di-jun, Xu Zhen-hai, Xiong Zi-yuan, et al.. Performance analysis of polarization-space-time joint domain processing for clutter suppression in airborne radars[J]. Acta Electronica Sinica, 2012, 40(7): 1429-1433.
    [95]
    Gu C, He J, Li H, et al.. Target localization using MIMO electromagnetic vector array systems[J]. Signal Processing, 2013, 93(7): 2103-2107.
    [96]
    郑桂妹, 陈伯孝, 杨明磊. 基于矢量传感器MIMO 雷达的发射极化优化DOA 估计算法[J]. 电子与信息学报, 2014, 36(3): 565-570. Zheng Gui-mei, Chen Bai-xiao, and Yang Ming-lei. Transmitted polarization optimization for DOA estimation based on vector sensor MIMO radar[J]. Journal of Electronics Information Technology, 2014, 36(3): 565-570.
    [97]
    郑桂妹, 杨明磊, 陈伯孝, 等. 干涉式矢量传感器MIMO 雷达的DOD/DOA 和极化联合估计[J]. 电子与信息学报, 2012, 34(11): 2635-2641. Zheng Gui-mei, Yang Ming-lei, Chen Bai-xiao, et al.. Joint DOD/DOA and polarization estimation for interferometric MIMO radar with electromagnetic vector sensors[J]. Journal of Electronics Information Technology, 2012, 34(11): 2635-2641.
    [98]
    王克让, 朱晓华, 何劲. 基于矢量传感器MIMO 雷达的DOD DOA 和极化联合估计算法[J]. 电子与信息学报, 2012, 34(1): 160-165. Wang Ke-rang, Zhu Xiao-hua, and He Jin. Joint DOD DOA and polarization estimation for MIMO radar with electromagnetic vector sensors[J]. Journal of Electronics Information Technology, 2012, 34(1): 160-165.
    [99]
    王克让, 何劲, 贺亚鹏, 等. 基于矢量传感器的扩展孔径双基地MIMO 雷达多目标定位算法[J]. 电子与信息学报, 2012, 34(4): 582-586. Wang Ke-rang, He Jin, He Ya-peng, et al.. Extended-aperture multi-target location algorithm for MIMO radars with vector sensors[J]. Journal of Electronics Information Technology, 2012, 34(4): 582-586.
    [100]
    Josefsson L and Persson P. Conformal Array Antenna Theory and Design[M]. Hoboken, NJ: John Wiley Sons, Inc., 2006.
    [101]
    Zatman M. Circular array STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 510-517.
    [102]
    高飞, 谢文冲, 王永良. 机载共形阵雷达杂波抑制方法研究[J]. 电子学报, 2010, 38(9): 2014-2020. Gao Fei, Xie Wen-chong, and Wang Yong-liang. Study on clutter suppression method for airborne radar with conformal arrays[J]. Acta Electronica Sinica, 2010, 38(9): 2014-2020.
    [103]
    段克清, 谢文冲, 王永良, 等. 共形阵机载火控雷达杂波建模与杂波抑制[J]. 系统工程与电子技术, 2011, 33(8): 1738-1744. Duan Ke-qing, Xie Wen-chong, Wang Yong-liang, et al.. Clutter modeling and suppression for airborne fire control radar with conformal antennas array[J]. System Engineering and Electronics, 2011, 33(8): 1738-1744.
    [104]
    金林. 智能化认知雷达综述[J]. 现代雷达, 2013, 35(11): 6-11. Jin Lin. Overview of cognitive radar with intelligence[J]. Modern Radar, 2013, 35(11): 6-11.
    [105]
    Guerci J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. Norwood, MA: Artech House, Inc., 2010.
    [106]
    贲德, 王峰, 雷智勇. 基于认知原理的机载雷达抗干扰技术研究[J]. 中国电子科学研究院学报, 2013, 8(4): 368-372. Ben De, Wang Feng, and Lei Zhi-yong. Key anti-jamming technique of airborne radar based on cognition[J]. Journal of China Academy of Electronics and Information Technology, 2013, 8(4): 368-372.
  • Relative Articles

    [1]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [2]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [3]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [4]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [5]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [6]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [7]CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189
    [8]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [9]MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, ZHOU Wei, LIU Ningbo, DONG Yunlong. Clutter Suppression and Marine Target Detection for Radar Images Based on INet[J]. Journal of Radars, 2020, 9(4): 640-653. doi: 10.12000/JR20090
    [10]MA Jiazhi, SHI Longfei, XU Zhenhai, WANG Xuesong. Overview of Multi-source Parameter Estimation and Jamming Mitigation for Monopulse Radars[J]. Journal of Radars, 2019, 8(1): 125-139. doi: 10.12000/JR18093
    [11]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [12]Wang Lulu, Wang Hongqiang, Wang Manxi, Li Xiang. An Overview of Radar Waveform Optimization for Target Detection[J]. Journal of Radars, 2016, 5(5): 487-498. doi: 10.12000/JR16084
    [13]Dai Huanyao, Liu Yong, Huang Zhenyu, Zhang Yang. Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker[J]. Journal of Radars, 2016, 5(2): 156-163. doi: 10.12000/JR16046
    [14]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [15]Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013
    [16]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [17]Zhao Yong-ke, Lü Xiao-De. A Joint-optimized Real-time Target Detection Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 666-674. doi: 10.12000/JR14005
    [18]Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002
    [19]Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075
    [20]Li Jun, Dang Bo, Liu Chang-zan, Liao Gui-sheng. Bistatic MIMO Radar Clutter Suppression by Exploiting the Transmit Angle[J]. Journal of Radars, 2014, 3(2): 208-216. doi: 10.3724/SP.J.1300.2014.13148
  • Cited by

    Periodical cited type(4)

    1. 葛津津,周浩,凌天庆. 一种应用于脉冲探地雷达前端的探测子系统. 电子测量技术. 2022(04): 27-32 .
    2. 尹诗,郭伟. 用于探地雷达的超宽带天线设计与仿真. 电子设计工程. 2018(03): 98-102 .
    3. 宋立伟,张超,洪涛. 冲击波载荷对平面阵列天线电性能的影响. 电子机械工程. 2017(04): 1-5+58 .
    4. 尹德,叶盛波,刘晋伟,纪奕才,刘小军,方广有. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线. 雷达学报. 2017(06): 611-618 . 本站查看

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4144) PDF downloads(3050) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint