Citation: | QUAN Yinghui, WU Yaojun, DUAN Lining, et al. A review of radar signal processing based on sparse recovery[J]. Journal of Radars, 2024, 13(1): 46–67. doi: 10.12000/JR23211 |
[1] |
DE PRONY G R. Essai experimental et analytique: Sur les lois de la dilatabilite des fluides elastique et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, a differentes temperatures[J]. Journal Polytechnique ou Bulletin du Travail fait a l’Ecole Centrale des Travaux Publics, 1795, 1(2): 24–76.
|
[2] |
CANDÈS E J. Compressive sampling[C]. The International Congress of Mathematicians, Madrid, Spain, 2006: 1433–1452.
|
[3] |
DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2197–2202. doi: 10.1073/pnas.0437847100
|
[4] |
MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
|
[5] |
GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. The 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 399–406.
|
[6] |
王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维 SAR 成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101
WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101
|
[7] |
胡磊, 周剑雄, 石志广, 等. 利用期望-最大化算法实现基于动态词典的压缩感知[J]. 电子与信息学报, 2012, 34(11): 2554–2560. doi: 10.3724/SP.J.1146.2012.00347
HU Lei, ZHOU Jianxiong, SHI Zhiguang, et al. An EM-based approach for compressed sensing using dynamic dictionaries[J]. Journal of Electronics & Information Technology, 2012, 34(11): 2554–2560. doi: 10.3724/SP.J.1146.2012.00347
|
[8] |
TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
|
[9] |
CANDÈS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
|
[10] |
CANDÈS E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507
|
[11] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[12] |
SHOA A and SHIRANI S. Progressive coding of a gaussian source using matching pursuit[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 636–649. doi: 10.1109/TSP.2007.907891
|
[13] |
SAHOO S K and MAKUR A, et al. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2015, 63(10): 2572–2581.
|
[14] |
NEEDELL D and VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317–334. doi: 10.1007/s10208-008-9031-3
|
[15] |
HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301
|
[16] |
WANG Lei, HUANG Tianyao, and LIU Yimin. Randomized stepped frequency radars exploiting block sparsity of extended targets: A theoretical analysis[J]. IEEE Transactions on Signal Processing, 2021, 69: 1378–1393. doi: 10.1109/TSP.2021.3058444
|
[17] |
HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706–5721. doi: 10.1109/TSP.2020.3026186
|
[18] |
BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 128–133.
|
[19] |
GEDALYAHU K and ELDAR Y C. Time-delay estimation from low-rate samples: A union of subspaces approach[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3017–3031. doi: 10.1109/TSP.2010.2044253
|
[20] |
KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
|
[21] |
CHAN W L, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105. doi: 10.1063/1.2989126
|
[22] |
FANNJIANG A C, STROHMER T, and YAN Pengchong. Compressed remote sensing of sparse objects[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 595–618. doi: 10.1137/090757034
|
[23] |
MA Jianwei. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 199–203. doi: 10.1109/LGRS.2008.2010959
|
[24] |
BAJWA W U, LEUS G, SCAGLIONE A, et al. Special issue on compressive sensing in communications[J]. Physical Communication, 2012, 5(2): 61–63. doi: 10.1016/j.phycom.2011.11.003
|
[25] |
HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862–5875. doi: 10.1109/TIT.2010.2070191
|
[26] |
LIANG Junhua, LIU Yang, ZHANG Wenjun, et al. Joint compressive sensing in wideband cognitive networks[C]. 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 2010: 1–5.
|
[27] |
SEJDIĆ E, OROVIĆ I, and STANKOVIĆ S. Compressive sensing meets time-frequency: An overview of recent advances in time-frequency processing of sparse signals[J]. Digital Signal Processing, 2018, 77: 22–35. doi: 10.1016/j.dsp.2017.07.016
|
[28] |
AXELSSON S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890–904. doi: 10.1109/TGRS.2006.888865
|
[29] |
MARIC S V and TITLEBAUM E L. A class of frequency hop codes with nearly ideal characteristics for use in multiple-access spread-spectrum communications and radar and sonar systems[J]. IEEE Transactions on Communications, 1992, 40(9): 1442–1447. doi: 10.1109/26.163565
|
[30] |
HERMAN M and STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275–2284. doi: 10.1109/TSP.2009.2014277
|
[31] |
HERMAN M and STROHMER T. Compressed sensing radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
|
[32] |
MISHALI M, ELDAR Y C, DOUNAEVSKY O, et al. Sub-nyquist acquisition hardware for wideband communication[C]. 2010 IEEE Workshop On Signal Processing Systems, San Francisco, USA, 2010: 156–161.
|
[33] |
ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
|
[34] |
YU Yao, PETROPULU A P, and POOR H V. Compressive sensing for MIMO radar[C]. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 3017–3020.
|
[35] |
文方青, 张弓, 陶宇, 等. 面向低信噪比的自适应压缩感知方法[J]. 物理学报, 2015, 64(8): 084301. doi: 10.7498/aps.64.084301
WEN Fangqing, ZHANG Gong, TAO Yu, et al. Adaptive compressive sensing toward low signal-to-noise ratio scene[J]. Acta Physica Sinica, 2015, 64(8): 084301. doi: 10.7498/aps.64.084301
|
[36] |
XIAO Peng, YU Ze, and LI Chunsheng. Compressive sensing SAR range compression with chirp scaling principle[J]. Science China Information Sciences, 2012, 55(10): 2292–2300. doi: 10.1007/s11432-012-4613-8
|
[37] |
肖鹏, 李春升, 于泽. 合成孔径雷达压缩感知成像方法[J]. 北京航空航天大学学报, 2011, 37(11): 1333–1337.
XIAO Peng, LI Chunsheng, and YU Ze. On compressive sensing applied to SAR imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1333–1337.
|
[38] |
张玉玺, 孙进平, 张冰尘, 等. 基于压缩感知理论的多普勒解模糊处理[J]. 电子与信息学报, 2011, 33(9): 2103–2107. doi: 10.3724/SP.J.1146.2011.00073
ZHANG Yuxi, SUN Jinping, ZHANG Bingchen, et al. Doppler ambiguity resolution based on compressive sensing theory[J]. Journal of Electronics & Information Technology, 2011, 33(9): 2103–2107. doi: 10.3724/SP.J.1146.2011.00073
|
[39] |
王雪君, 孙进平, 张旭旺. 基于压缩感知的PD雷达序贯扩展卡尔曼滤波跟踪方法[J]. 信号处理, 2017, 33(4): 601–606. doi: 10.16798/j.issn.1003-0530.2017.04.022
WANG Xuejun, SUN Jinping, and ZHANG Xuwang. New sequential extended kalman filter for pulse doppler radar tracker based on compressive sensing[J]. Journal of Signal Processing, 2017, 33(4): 601–606. doi: 10.16798/j.issn.1003-0530.2017.04.022
|
[40] |
LEI Lei, LIE J P, GERSHMAN A B, et al. Robust adaptive beamforming in partly calibrated sparse sensor arrays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1661–1667. doi: 10.1109/TSP.2009.2037852
|
[41] |
WANG Jian, SHENG Weixing, HAN Yubing, et al. Adaptive beamforming with compressed sensing for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823–833. doi: 10.1109/TAES.2014.120532
|
[42] |
XIE Hu, FENG Dazheng, and YU Hongbo. Fast and robust adaptive beamforming method based on l1-norm constraint for large array[J]. Electronics Letters, 2015, 51(1): 98–99. doi: 10.1049/el.2014.2919
|
[43] |
STOICA P, BABU P, and LI Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35–47. doi: 10.1109/TSP.2010.2086452
|
[44] |
BOURGUIGNON S, CARFANTAN H, and IDIER J. A sparsity-based method for the estimation of spectral lines from irregularly sampled data[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 575–585. doi: 10.1109/JSTSP.2007.910275
|
[45] |
SHAH S, YU Yao, and PETROPULU A. Step-frequency radar with compressive sampling (SFR-CS)[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 1686–1689.
|
[46] |
POTTER L C, ERTIN E, PARKER J T, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006–1020. doi: 10.1109/JPROC.2009.2037526
|
[47] |
ZHANG Bingchen, HONG Wen, and WU Yirong. Sparse microwave imaging: Principles and applications[J]. Science China Information Sciences, 2012, 55(8): 1722–1754. doi: 10.1007/s11432-012-4633-4
|
[48] |
JIANG Chenglong, ZHANG Bingchen, ZHANG Zhe, et al. Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data[J]. Science China Information Sciences, 2012, 55(8): 1801–1815. doi: 10.1007/s11432-012-4634-3
|
[49] |
CANDÈS E J and ROMBERG J K. Signal recovery from random projections[C]. SPIE 5674, Computational Imaging III, San Jose, United States, 2005: 76–86.
|
[50] |
CANDÈS E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
[51] |
TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549–571. doi: 10.1016/j.sigpro.2005.05.029
|
[52] |
DONOHO D L and HUO Xiaoming. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845–2862. doi: 10.1109/18.959265
|
[53] |
TANG Gongguo and NEHORAI A. Performance analysis of sparse recovery based on constrained minimal singular values[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5734–5745. doi: 10.1109/TSP.2011.2164913
|
[54] |
CANDÈS E J and PLAN Y. A probabilistic and RIPless theory of compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7235–7254. doi: 10.1109/TIT.2011.2161794
|
[55] |
HÜGEL M, RAUHUT H, and STROHMER T. Remote sensing via ℓ1-minimization[J]. Foundations of Computational Mathematics, 2014, 14(1): 115–150. doi: 10.1007/s10208-013-9157-9
|
[56] |
CANDÈS E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
|
[57] |
黄天耀, 李宇涵, 王磊, 等. 相参频率捷变雷达目标稀疏重建性能边界综述[J]. 系统工程与电子技术, 2021, 43(7): 1729–1736. doi: 10.12305/j.issn.1001-506X.2021.07.01
HUANG Tianyao, LI Yuhan, WANG Lei, et al. Review of performance bounds on sparse target recovery using coherent frequency agile radar[J]. Systems Engineering and Electronics, 2021, 43(7): 1729–1736. doi: 10.12305/j.issn.1001-506X.2021.07.01
|
[58] |
CUI Hongyu and DUAN Huiping. Sparse Bayesian learning using correlated hyperparameters for recovery of block sparse signals[J]. Digital Signal Processing, 2017, 68: 24–30. doi: 10.1016/j.dsp.2017.05.003
|
[59] |
ELDAR Y C and MISHALI M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302–5316. doi: 10.1109/TIT.2009.2030471
|
[60] |
BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982–2001. doi: 10.1109/TIT.2010.2040894
|
[61] |
张迪. 块稀疏信号的相位恢复方法研究[D]. [博士论文], 电子科技大学, 2023.
ZHANG Di. Research on phase retrieval methods for block-sparse signals[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2023.
|
[62] |
CANDÈS E and TAO T. The Dantzig selector: Statistical estimation when p is much larger than n[J]. The Annals of Statistics, 2007, 35(6): 2313–2351. doi: 10.1214/009053606000001523
|
[63] |
BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
|
[64] |
NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316. doi: 10.1109/JSTSP.2010.2042412
|
[65] |
NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
|
[66] |
TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
|
[67] |
XU Jiangpin, PI Yining, and CAO Zjie. Bayesian compressive sensing in synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2012, 6(1): 2–8. doi: 10.1049/iet-rsn.2010.0375
|
[68] |
杜文静. 基于稀疏贝叶斯学习的探地雷达成像算法研究[D]. [博士论文], 桂林电子科技大学, 2023.
DU Wenjing. Research on imaging technology of ground penetrating radar based on sparse Bayesian learning[D]. [Ph.D. dissertation], Guilin University of Electronic Technology, 2023.
|
[69] |
祁锐. 基于压缩感知的块稀疏信号重构算法及其应用研究[D]. [博士论文], 中国地质大学, 2018.
QI Rui. Recovery algorithms of block sparse signal based on compressed sensing and it’s applications[D]. [Ph.D. dissertation], China University of Geosciences, 2018.
|
[70] |
姚成勇. 块稀疏信号的结构化压缩感知重构算法研究[D]. [硕士论文], 重庆邮电大学, 2016.
YAO Chengyong. Research of block-sparse signals reconstruction algorithms based on structured compressive sensing[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2016.
|
[71] |
KNILL C, SCHWEIZER B, SPARRER S, et al. High range and Doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3535–3546. doi: 10.1109/TMTT.2018.2830389
|
[72] |
黄天耀. 基于稀疏反演的相参捷变频雷达信号处理[D]. [博士论文], 清华大学, 2014.
HUANG Tianyao. Coherent frequency-agile radar signal processing by solving an inverse problem with a sparsity constraint[D]. [Ph.D. dissertation], Tsinghua University, 2014.
|
[73] |
全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar waveform countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
|
[74] |
董淑仙, 全英汇, 沙明辉, 等. 捷变频雷达联合脉内频率编码抗间歇采样干扰[J]. 系统工程与电子技术, 2022, 44(11): 3371–3379. doi: 10.12305/j.issn.1001-506X.2022.11.11
DONG Shuxian, QUAN Yinghui, SHA Minghui, et al. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming[J]. Systems Engineering and Electronics, 2022, 44(11): 3371–3379. doi: 10.12305/j.issn.1001-506X.2022.11.11
|
[75] |
Jankiraman M, Wessels B J, and Van Genderen P. Design of a Multifrequency FMCW Radar[C]. 1998 28th European Microwave Conference, Amsterdam, Netherlands, 1998: 584–589.
|
[76] |
LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
|
[77] |
KNILL C, SCHWEIZER B, STEPHANY S, et al. FMCW-interference of frequency agile OFDM radars[C]. 2020 17th European Radar Conference, Utrecht, Netherlands, 2021: 160–163.
|
[78] |
LIU Zhixing, QUAN Yinghui, WU Yaojun, et al. Range and Doppler reconstruction for sparse frequency agile linear frequency modulation-orthogonal frequency division multiplexing radar[J]. IET Radar, Sonar & Navigation, 2022, 16(6): 1014–1025. doi: 10.1049/rsn2.12239
|
[79] |
SKOLNIK M, NEMHAUSER G, and SHERMAN J. Dynamic programming applied to unequally spaced arrays[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(1): 35–43. doi: 10.1109/TAP.1964.1138163
|
[80] |
KING D, PACKARD R, and THOMAS R. Unequally-spaced, broad-band antenna arrays[J]. IRE Transactions on Antennas and Propagation, 1960, 8(4): 380–384. doi: 10.1109/TAP.1960.1144876
|
[81] |
SWENSON G and LO Y. The university of illinois radio telescope[J]. IRE Transactions on Antennas and Propagation, 1961, 9(1): 9–16. doi: 10.1109/TAP.1961.1144945
|
[82] |
KUMAR B P and BRANNER G R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(2): 621–634. doi: 10.1109/TAP.2004.841324
|
[83] |
陈客松. 稀布天线阵列的优化布阵技术研究[D]. [博士论文], 电子科技大学, 2006.
CHEN Kesong. Research on synthesis and optimization techniques of sparse antenna arrays[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2006.
|
[84] |
胡斌. 基于压缩感知的稀疏阵列DOA估计关键技术研究[D]. [博士论文], 哈尔滨工业大学, 2020.
HU Bin. Research on key technologies of DOA estimation of sparse array based on compressed sensing[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2020.
|
[85] |
季柄任. 稀疏孔径ISAR/InISAR成像算法研究[D]. [博士论文], 哈尔滨工业大学, 2021.
JI Bingren. Research on methods of sparse apertuer ISAR/InISAR imaging[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2021.
|
[86] |
程增飞. 基于压缩感知的阵列信号处理技术研究[D]. [博士论文], 西安电子科技大学, 2017.
CHENG Zengfei. Study on array signal processing technique based on compressed sensing[D]. [Ph.D. dissertation], Xidian University, 2017.
|
[87] |
黄传禄, 晁坤, 毛云志. 基于压缩感知的空间谱估计[J]. 电波科学学报, 2014, 29(1): 150–157. doi: 10.13443/j.cjors.2013031101
HUANG Chuanlu, CHAO Kun, and MAO Yunzhi. The spatial spectrum estimation based on compressive sensing[J]. Chinese Journal of Radio Science, 2014, 29(1): 150–157. doi: 10.13443/j.cjors.2013031101
|
[88] |
郭月强, 陈建春, 王永军. 基于压缩感知的空域信号DOA估计[J]. 电子科技, 2013, 26(11): 39–41. doi: 10.3969/j.issn.1007-7820.2013.11.011
GUO Yueqiang, CHEN Jianchun, and WANG Yongjun. Compressive sensing based narrowband signals DOA estimation[J]. Electronic Science and Technology, 2013, 26(11): 39–41. doi: 10.3969/j.issn.1007-7820.2013.11.011
|
[89] |
SU Xiaolong, LIU Zhen, SHI Junpeng, et al. Real-valued deep unfolded networks for off-grid DOA estimation via nested array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4049–4062. doi: 10.1109/TAES.2023.3235746
|
[90] |
YANG Xiaopeng, SUN Yuze, ZENG Tao, et al. Fast STAP method based on PAST with sparse constraint for airborne phased array radar[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4550–4561. doi: 10.1109/TSP.2016.2569471
|
[91] |
王安安, 谢文冲, 王永良. 基于稀疏恢复的双基地机载雷达杂波抑制方法[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20230313.1010.004.html, 2023.
WANG An’an, XIE Wenchong, and WANG Yongliang. Bistatic airborne radar clutter suppression method based on sparse recovery[J/OL]. Systems Engineering and Electronics. http://kns.cnki.net/kcms/detail/11.2422.TN.20230313.1010.004.html, 2023.
|
[92] |
CUI Ning, XING Kun, YU Zhongjun, et al. Tensor-based sparse recovery space-time adaptive processing for large size data clutter suppression in airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 907–922. doi: 10.1109/TAES.2022.3192223
|
[93] |
王停, 张永斌, 王凡, 等. 压缩感知理论在稀疏阵列方向图综合中的应用研究[J]. 河北工业大学学报, 2020, 49(6): 22–27. doi: 10.14081/j.cnki.hgdxb.2020.06.004
WANG Ting, ZHANG Yongbin, WANG Fan, et al. Study on application of compressed sensing theory in pattern synthesis for sparse array[J]. Journal of Hebei University of Technology, 2020, 49(6): 22–27. doi: 10.14081/j.cnki.hgdxb.2020.06.004
|
[94] |
JIANG Siyi, FU Ning, WEI Zhiliang, et al. Compressed sampling for spectrum measurement and DOA estimation with array cooperative MWC[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 6504014. doi: 10.1109/TIM.2023.3291780
|
[95] |
张小卫. 基于稀疏重构的DOA估计方法研究[D]. [博士论文], 哈尔滨工程大学, 2020.
ZHANG Xiaowei. Research on direction-of-arrival estimation based on sparse reconstruction[D]. [Ph.D. dissertation], Harbin Engineering University, 2020.
|
[96] |
YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792
|
[97] |
YU Gong, XIAO Shaoqiu, YU Zheng, et al. Synthesis of multiple-pattern planar arrays by the multitask Bayesian compressive sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1587–1591. doi: 10.1109/LAWP.2021.3091613
|
[98] |
李少东, 裴文炯, 杨军. 基于CS的LFM信号脉冲压缩实现算法研究[J]. 雷达科学与技术, 2013, 11(3): 295–301. doi: 10.3969/j.issn.1672-2337.2013.03.014
LI Shaodong, PEI Wenjiong, and YANG Jun. Pulse compression implementation of LFM signal via CS[J]. Radar Science and Technology, 2013, 11(3): 295–301. doi: 10.3969/j.issn.1672-2337.2013.03.014
|
[99] |
庄钊文, 袁乃昌, 莫锦军, 等. 军用目标雷达散射截面预估与测量[M]. 北京: 科学出版社, 2007.
ZHUANG Zhaowen, YUAN Naichang, MO Jinjun, et al. Estimation and Measurement of Radar Cross Section Area of Military Targets[M]. Beijing: Science Press, 2007.
|
[100] |
孙艳艳. 压缩感知在雷达信号处理中的应用研究[D]. [硕士论文], 南京大学, 2013.
SUN Yanyan. Study on compressive sensing in radar signal processing[D]. [Master dissertation], Nanjing University, 2013.
|
[101] |
原慧, 盖玉刚, 刘淑普, 等. 基于压缩感知信号重构的宽带LFM雷达抗间歇采样转发干扰方法[J]. 舰船电子对抗, 2021, 44(6): 66–72, 103. doi: 10.16426/j.cnki.jcdzdk.2021.06.013
YUAN Hui, GAI Yugang, LIU Shupu, et al. A method of wide-band LFM radar against interrupted-sampling repeater jamming based on compressed sensing signal reconstruction[J]. Shipboard Electronic Countermeasure, 2021, 44(6): 66–72, 103. doi: 10.16426/j.cnki.jcdzdk.2021.06.013
|
[102] |
吴耀君. 脉间频率捷变雷达抗干扰研究[D]. [硕士论文], 西安电子科技大学, 2018.
WU Yaojun. Research on anti-jamming performance of frequency agility radar[D]. [Master dissertation], Xidian University, 2018.
|
[103] |
QUAN Yinghui, ZHANG Lei, XING Mengdao, et al. Velocity ambiguity resolving for moving target indication by compressed sensing[J]. Electronics Letters, 2011, 47(22): 1249–1251. doi: 10.1049/el.2011.1293
|
[104] |
隋金坪, 刘振, 魏玺章, 等. 基于随机PRI压缩感知雷达的速度假目标识别方法[J]. 电子学报, 2017, 45(1): 98–103. doi: 10.3969/j.issn.0372-2112.2017.01.014
SUI Jinping, LIU Zhen, WEI Xizhang, et al. Velocity false target identification based on random pulse repetition interval compressed sensing radar[J]. Acta Electronica Sinica, 2017, 45(1): 98–103. doi: 10.3969/j.issn.0372-2112.2017.01.014
|
[105] |
LI Yuhan, HUANG Tianyao, XU Xingyu, et al. Phase transitions in frequency agile radar using compressed sensing[J]. IEEE Transactions on Signal Processing, 2021, 69: 4801–4818. doi: 10.1109/TSP.2021.3099629
|
[106] |
QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
|
[107] |
KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116
|
[108] |
JAKOWATZ C V, WAHL D E, EICHEL P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. New York: Springer, 1996.
|
[109] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
[110] |
XU Gang, ZHANG Bangjie, YU Hanwen, et al. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(4): 32–69. doi: 10.1109/MGRS.2022.3218801
|
[111] |
孙超. 基于压缩感知的高分辨雷达成像方法研究[D]. [博士论文], 西北工业大学, 2017.
SUN Chao. Research on high-resolution radar imaging method based on compressed sensing[D]. [Ph.D. dissertation], Northwestern Polytechnical University, 2017.
|
[112] |
王伟伟, 廖桂生, 吴孙勇, 等. 基于小波稀疏表示的压缩感知SAR成像算法研究[J]. 电子与信息学报, 2011, 33(6): 1440–1446. doi: 10.3724/SP.J.1146.2010.01171
WANG Weiwei, LIAO Guisheng, WU Sunyong, et al. A compressive sensing imaging approach based on wavelet sparse representation[J]. Journal of Electronics & Information Technology, 2011, 33(6): 1440–1446. doi: 10.3724/SP.J.1146.2010.01171
|
[113] |
ÇETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
|
[114] |
ALVER M B, SALEEM A, and ÇETIN M. Plug-and-play synthetic aperture radar image formation using deep priors[J]. IEEE Transactions on Computational Imaging, 2021, 7: 43–57. doi: 10.1109/TCI.2020.3047473
|
[115] |
杨悦. 合成孔径雷达结构化目标稀疏成像方法研究[D]. [博士论文], 电子科技大学, 2020.
YANG Yue. Synthetic aperture radar sparse imaging method for structured target[D]. [Ph.D. Dissertation], University of Electronic Science and Technology of China, 2020.
|
[116] |
XU Gang, XIA Xianggen, and HONG Wei. Nonambiguous SAR image formation of maritime targets using weighted sparse approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1454–1465. doi: 10.1109/TGRS.2017.2763147
|
[117] |
COKER J D and TEWFIK A H. Compressed sensing and multistatic SAR[C]. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 1097–1100.
|
[118] |
STOJANOVIC I and KARL W C. Imaging of moving targets with multi-static SAR using an overcomplete dictionary[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 164–176. doi: 10.1109/JSTSP.2009.2038982
|
[119] |
李晶, 张顺生, 常俊飞. 基于压缩感知的双基SAR二维高分辨成像算法[J]. 信号处理, 2012, 28(5): 737–743. doi: 10.3969/j.issn.1003-0530.2012.05.019
LI Jing, ZHANG Shunsheng, and CHANG Junfei. Two-dimensional high resolution bistatic SAR imaging algorithm based on compressed sensing[J]. Signal Processing, 2012, 28(5): 737–743. doi: 10.3969/j.issn.1003-0530.2012.05.019
|
[120] |
ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130
|
[121] |
XU Gang, XING Mengdao, XIA Xianggen, et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4010–4027. doi: 10.1109/JSTARS.2015.2439266
|
[122] |
ZHANG Lei, XING Mengdao, QIU Chengwei, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3824–3838. doi: 10.1109/TGRS.2010.2048575
|
[123] |
ZHAO Guanghui, WANG Zhengyang, WANG Qi, et al. Robust ISAR imaging based on compressive sensing from noisy measurements[J]. Signal Processing, 2012, 92(1): 120–129. doi: 10.1016/j.sigpro.2011.06.011
|
[124] |
ZHANG Xiaohua, BAI Ting, MENG Hongyun, et al. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990–994. doi: 10.1109/LGRS.2013.2284288
|
[125] |
HU Changyu, LI Ze, WANG Ling, et al. Inverse synthetic aperture radar imaging using a deep ADMM network[C]. 2019 20th International Radar Symposium, Ulm, Germany, 2019: 1–9.
|
[126] |
XU Gang, XING Mengdao, ZHANG Lei, et al. Bayesian inverse synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1150–1154. doi: 10.1109/LGRS.2011.2158797
|
[127] |
LIU Jihong, LI Xiang, XU Shaokun, et al. ISAR imaging of non-uniform rotation targets with limited pulses via compressed sensing[J]. Progress in Electromagnetics Research B, 2012, 41: 285–305. doi: 10.2528/PIERB12041715
|
[128] |
SUN Chao, WANG Baoping, FANG Yang, et al. High-resolution ISAR imaging of maneuvering targets based on sparse reconstruction[J]. Signal Processing, 2015, 108: 535–548. doi: 10.1016/j.sigpro.2014.10.027
|
[129] |
RAGHAVAN R S. Analysis of CA-CFAR processors for linear-law detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 661–665. doi: 10.1109/7.256288
|
[130] |
李莹, 张弓, 陶宇, 等. 基于压缩感知的步进频雷达目标检测算法[J]. 现代雷达, 2015, 37(9): 22–25. doi: 10.16592/j.cnki.1004-7859.2015.09.005
LI Ying, ZHANG Gong, TAO Yu, et al. Target detection in compressive sensing based on step frequency radar[J]. Modern Radar, 2015, 37(9): 22–25. doi: 10.16592/j.cnki.1004-7859.2015.09.005
|
[131] |
刘长远, 马俊虎, 甘露. 基于压缩感知的CFAR目标检测在机会雷达中的应用[J]. 太赫兹科学与电子信息学报, 2018, 16(4): 630–636. doi: 10.11805/TKYDA201804.0630
LIU Changyuan, MA Junhu, and GAN Lu. Application of CA-CFAR with Compressive Sensing in opportunistic radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(4): 630–636. doi: 10.11805/TKYDA201804.0630
|
[132] |
张杏杏. 基于压缩感知的雷达恒虚警率检测算法的研究[D]. [硕士论文], 大连海事大学, 2019.
ZHANG Xingxing. Rearch on radar constant false alarm rate detection algorithm based on compressed sensing[D]. [Master dissertation], Dalian Maritime University, 2019.
|
[133] |
NA Siqi, HUANG Tianyao, LIU Yimin, et al. Compressed sensing radar detectors under the row-orthogonal design model: A statistical mechanics perspective[J]. IEEE Transactions on Signal Processing, 2023, 71: 2668–2682. doi: 10.1109/TSP.2023.3297743
|
[134] |
ZHANG Xiaowei, LI Ming, ZUO Lei, et al. Compressed sensing detector for wideband radar using the dominant scatterer[J]. IEEE Signal Processing Letters, 2014, 21(10): 1275–1279. doi: 10.1109/LSP.2014.2332640
|