Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152

Study of Wide Swath Synthetic Aperture Ladar Imaging Techology

DOI: 10.12000/JR16152
Funds:  The National Ministries Foundation, The Innovation Frontier Project of IECAS (Y3Z0150102)
  • Received Date: 2016-12-22
  • Rev Recd Date: 2017-03-24
  • Publish Date: 2017-02-28
  • Combining synthetic-aperture imaging and coherent-light detection technology, the weak signal identification capacity of Synthetic Aperture Ladar (SAL) reaches the photo level, and the image resolution exceeds the diffraction limit of the telescope to obtain high-resolution images irrespective to ranges. This paper introduces SAL, including the development path, technology characteristics, and the restriction of imaging swath. On the basis of this, we propose to integrate the SAL technology for extending its swath. By analyzing the scanning-operation mode and the signal model, the paper explicitly proposes that the former mode will be the developmental trend of the SAL technology. This paper also introduces the flight demonstrations of the SAL and the imaging results of remote targets, showing the potential of the SAL in long-range, high-resolution, and scanning-imaging applications. The technology and the theory of the scanning mode of SAL compensates for the defects related to the swath and operation efficiency of the current SAL. It provides scientific foundation for the SAL system applied in wide swath, high resolution earth observation, and the ISAL system applied in space-targets imaging.

     

  • [1]
    Lewis T S and Hutchins H S. A synthetic aperture at optical frequencies[J].Proceedings of the IEEE, 1970, 58(4): 578–588. https://www.researchgate.net/publication/2992085_A_synthetic_aperture_at_optical_frequencies
    [2]
    Bashkansky M, Lucke R L, Funk E,et al.. Two-dimensional synthetic aperture imaging in the optical domain[J].Optics Letters, 2002, 27(22): 1983–1985. doi: 10.1364/OL.27.001983
    [3]
    Beck S M, Buck J R, Buell W F,et al.. Synthetic aperture imaging ladar: Laboratory demonstration and signal processing[J].Applied Optics, 2005, 44(35): 7621–7629. doi: 10.1364/AO.44.007621
    [4]
    Dierking M, Schumm B, Ricklin J C,et al.. Synthetic aperture LADAR for tactical imaging overview[C]. The 14th Coherent Laser Radar Conference (CLRC), 2007, Session 9.
    [5]
    Krause B W, Buck J, Ryan C,et al.. Synthetic aperture ladar flight demonstration[C]. Lasers and Electro-Optics (CLEO), 2011.
    [6]
    [7]
    郭亮, 邢孟道, 张龙, 等. 室内距离向合成孔径激光雷达成像的实验研究[J]. 中国科学E辑: 技术科学, 2009, 39(10): 1678–1684. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200910009.htm

    Guo Liang, Xing Meng-dao, Zhang Long,et al.. Research on indoor experimentation of rangeSAL imaging system[J].Science in China Series E:Technological Sciences, 2009, 52(10):3098–3104. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200910009.htm
    [8]
    刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验验证[J]. 光学学报, 2011, 31(9): 112–116. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201109016.htm

    Liu Li-ren, Zhou Yu, Zhi Ya-nan,et al.. A large-aperture synthetic aperture imaging ladardemonstrator and its verification in laboratory space[J].Acta Optica Sinica, 2011, 31(9): 112–116. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201109016.htm
    [9]
    Luan Zhu, Sun Jian-feng, Zhou Yu,et al.. Down-looking synthetic aperture imaging ladardemonstrator and its experiments over 1.2 km outdoor[J].Chinese Optics Letters, 2014,12(11): 45–48. https://www.researchgate.net/publication/267760278_Down-looking_synthetic_aperture_imaging_ladar_demonstrator_and_its_experiments_over_12_km_outdoor
    [10]
    Wu Jin, Li Fei-fei, Zhao Zhi-long,et al.. Demonstration of stripmap mode synthetic apertureladar with PGA-independent high resolution images[J].Infrares and Laser Engineering, 2014,43(11): 3559–3564.
    [11]
    李然, 王成, 苏国中, 等. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14): 58–63. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200714019.htm

    Li Ran, Wang Cheng, Su Guo-zhong,et al.. Development and applications of spaceborneLiDAR[J].Science &Technology Review, 2007, 25(14): 58–63. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200714019.htm
    [12]
    李田泽. 激光扫描成像系统的设计分析及应用[J]. 红外技术, 2004, 26(4): 16–19. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS200404003.htm

    Li Tian-ze. Application and design analysis of imagery system of laser scanning[J].InfraredTechnology, 2004, 26(4): 16–19. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS200404003.htm
    [13]
    Wahl D E, Eichel P H, Ghiglia D C,et al.. Phase gradient autofocus—A robust tool for highresolution sar phase correction[J].IEEE Transactions on Aerospace and Electronic Systems, 1994,30(3): 827–835. doi: 10.1109/7.303752
    [14]
    马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报,2014, 3(5): 591–602. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201405015.htm

    Ma Meng, Li Dao-jing, and Du Jian-bo. Imaging of airborne synthetic aperture ladar under platformvibration condition[J].Journal of Radars, 2014, 3(5): 591–602. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201405015.htm
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 56.2 %META: 56.2 %PDF: 11.6 %PDF: 11.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %其他: 2.0 %其他: 2.0 %Parkville: 0.1 %Parkville: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.9 %上海: 1.9 %东京: 0.3 %东京: 0.3 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.2 %九江: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 13.5 %北京: 13.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.3 %南京: 2.3 %南充: 0.2 %南充: 0.2 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.1 %台北: 0.1 %合肥: 1.1 %合肥: 1.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.4 %天津: 0.4 %天门: 0.1 %天门: 0.1 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %庆阳: 0.1 %庆阳: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.2 %延安: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 1.3 %张家口: 1.3 %徐州: 0.4 %徐州: 0.4 %德黑兰: 0.4 %德黑兰: 0.4 %忻州: 1.2 %忻州: 1.2 %怀化: 0.1 %怀化: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.5 %扬州: 0.5 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.1 %新德里: 0.1 %新泽西州: 0.1 %新泽西州: 0.1 %新竹: 0.2 %新竹: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.1 %昌吉: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.1 %深圳: 1.1 %渥太华: 0.2 %渥太华: 0.2 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 25.3 %芒廷维尤: 25.3 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.6 %衡水: 0.6 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.1 %衢州: 0.1 %西宁: 14.3 %西宁: 14.3 %西安: 2.6 %西安: 2.6 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.4 %遂宁: 0.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.4 %郑州: 0.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.4 %长沙: 1.4 %长治: 0.2 %长治: 0.2 %青岛: 0.4 %青岛: 0.4 %首尔: 0.3 %首尔: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ParkvilleUnited States[]上海东京东京都东莞中卫临汾临沂丹东乌鲁木齐九江保定兰州兰辛内江凉山北京十堰南京南充南宁南昌南通卡拉奇印多尔厦门台北合肥呼和浩特咸阳哈尔滨唐山喀什嘉兴大连天津天门太原威海娄底宁波安康宜春宣城常州常德平顶山广州庆阳库比蒂诺延安开封张家口徐州德黑兰忻州怀化悉尼成都扬州斯德哥尔摩新乡新德里新泽西州新竹无锡昆明昌吉晋中晋城朝阳杭州格兰特县桂林武威武汉沈阳沧州泉州洛阳济南济宁淮北淮南深圳渥太华温州渭南湖州湛江漯河烟台珠海石家庄福州秦皇岛纽约绵阳芒廷维尤芜湖芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城连云港遂宁邯郸郑州重庆长沙长治青岛首尔黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4445) PDF downloads(878) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint