2024年 13卷 第4期
2024, 13(4): 731-746.
摘要:
传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。 传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。
传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。 传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。
2024, 13(4): 747-760.
摘要:
单发单收穿墙雷达具备便携、系统简单、可独立工作等优势,但难以实现目标二维定位与跟踪。该文基于便携式单发单收雷达设计了一套分布式无线组网穿墙雷达系统,同时提出了一种目标联合定位方法,能够兼顾系统便携、低成本和目标二维信息估计。首先,设计了基于互补格雷码发射波形的超宽带雷达系统,解决了同频段多台雷达同时工作互相干扰的问题;分布式无线组网超宽带穿墙雷达系统包括3个雷达节点,并通过无线模块与数据处理中心通信。其次,提出了一种基于行为认知理论和模板匹配相结合的数据同步方法,通过识别各雷达数据中的相同运动状态来解决无线组网雷达慢时同步问题,摆脱了传统同步方法对硬件的苛刻要求。最后,提出基于Levenberg-Marquardt (L-M)最优化算法的雷达位置自估计和目标位置求解方法,实现了无先验雷达节点位置信息下的目标快速定位与跟踪。通过仿真分析与实验验证,该文设计的无线组网雷达系统可以实现目标二维定位与实时跟踪,雷达自身位置的估计精度优于0.06 m,对运动人体目标定位精度优于0.62 m。 单发单收穿墙雷达具备便携、系统简单、可独立工作等优势,但难以实现目标二维定位与跟踪。该文基于便携式单发单收雷达设计了一套分布式无线组网穿墙雷达系统,同时提出了一种目标联合定位方法,能够兼顾系统便携、低成本和目标二维信息估计。首先,设计了基于互补格雷码发射波形的超宽带雷达系统,解决了同频段多台雷达同时工作互相干扰的问题;分布式无线组网超宽带穿墙雷达系统包括3个雷达节点,并通过无线模块与数据处理中心通信。其次,提出了一种基于行为认知理论和模板匹配相结合的数据同步方法,通过识别各雷达数据中的相同运动状态来解决无线组网雷达慢时同步问题,摆脱了传统同步方法对硬件的苛刻要求。最后,提出基于Levenberg-Marquardt (L-M)最优化算法的雷达位置自估计和目标位置求解方法,实现了无先验雷达节点位置信息下的目标快速定位与跟踪。通过仿真分析与实验验证,该文设计的无线组网雷达系统可以实现目标二维定位与实时跟踪,雷达自身位置的估计精度优于0.06 m,对运动人体目标定位精度优于0.62 m。
单发单收穿墙雷达具备便携、系统简单、可独立工作等优势,但难以实现目标二维定位与跟踪。该文基于便携式单发单收雷达设计了一套分布式无线组网穿墙雷达系统,同时提出了一种目标联合定位方法,能够兼顾系统便携、低成本和目标二维信息估计。首先,设计了基于互补格雷码发射波形的超宽带雷达系统,解决了同频段多台雷达同时工作互相干扰的问题;分布式无线组网超宽带穿墙雷达系统包括3个雷达节点,并通过无线模块与数据处理中心通信。其次,提出了一种基于行为认知理论和模板匹配相结合的数据同步方法,通过识别各雷达数据中的相同运动状态来解决无线组网雷达慢时同步问题,摆脱了传统同步方法对硬件的苛刻要求。最后,提出基于Levenberg-Marquardt (L-M)最优化算法的雷达位置自估计和目标位置求解方法,实现了无先验雷达节点位置信息下的目标快速定位与跟踪。通过仿真分析与实验验证,该文设计的无线组网雷达系统可以实现目标二维定位与实时跟踪,雷达自身位置的估计精度优于0.06 m,对运动人体目标定位精度优于0.62 m。 单发单收穿墙雷达具备便携、系统简单、可独立工作等优势,但难以实现目标二维定位与跟踪。该文基于便携式单发单收雷达设计了一套分布式无线组网穿墙雷达系统,同时提出了一种目标联合定位方法,能够兼顾系统便携、低成本和目标二维信息估计。首先,设计了基于互补格雷码发射波形的超宽带雷达系统,解决了同频段多台雷达同时工作互相干扰的问题;分布式无线组网超宽带穿墙雷达系统包括3个雷达节点,并通过无线模块与数据处理中心通信。其次,提出了一种基于行为认知理论和模板匹配相结合的数据同步方法,通过识别各雷达数据中的相同运动状态来解决无线组网雷达慢时同步问题,摆脱了传统同步方法对硬件的苛刻要求。最后,提出基于Levenberg-Marquardt (L-M)最优化算法的雷达位置自估计和目标位置求解方法,实现了无先验雷达节点位置信息下的目标快速定位与跟踪。通过仿真分析与实验验证,该文设计的无线组网雷达系统可以实现目标二维定位与实时跟踪,雷达自身位置的估计精度优于0.06 m,对运动人体目标定位精度优于0.62 m。
2024, 13(4): 761-776.
摘要:
合成孔径雷达(SAR)具有全天时全天候非接触式监测的优势,是封闭空间安全监测的重要工具。然而,SAR应用于复杂封闭空间时,易受多径效应影响,导致图像存在大量虚像,严重影响判读。现有方法需要场景先验进行多径推算或通过子孔径加权融合抑制多径,但都难以准确区分多径虚像与目标图像。该文提出了一种新的多角度双层偏差度量方法,可有效获取多径虚像与目标间的特征差异。该方法首先采用大视角差对观测场景进行多角度观测,可充分利用多径虚像位置随观测角度变化,而实际目标位置保持不变的特性。然后使用双层偏差度量算法,该算法根据多径在多角度序列中的稀疏性,两次计算序列幅度值与序列均值的偏差,精准检测出稀疏、不稳定的多径成分并去除,对剩余稳定成分取均值。这样,在保留目标信息的同时有效抑制多径。最后,仿真和毫米波雷达实际数据处理验证了该文方法的有效性。 合成孔径雷达(SAR)具有全天时全天候非接触式监测的优势,是封闭空间安全监测的重要工具。然而,SAR应用于复杂封闭空间时,易受多径效应影响,导致图像存在大量虚像,严重影响判读。现有方法需要场景先验进行多径推算或通过子孔径加权融合抑制多径,但都难以准确区分多径虚像与目标图像。该文提出了一种新的多角度双层偏差度量方法,可有效获取多径虚像与目标间的特征差异。该方法首先采用大视角差对观测场景进行多角度观测,可充分利用多径虚像位置随观测角度变化,而实际目标位置保持不变的特性。然后使用双层偏差度量算法,该算法根据多径在多角度序列中的稀疏性,两次计算序列幅度值与序列均值的偏差,精准检测出稀疏、不稳定的多径成分并去除,对剩余稳定成分取均值。这样,在保留目标信息的同时有效抑制多径。最后,仿真和毫米波雷达实际数据处理验证了该文方法的有效性。
合成孔径雷达(SAR)具有全天时全天候非接触式监测的优势,是封闭空间安全监测的重要工具。然而,SAR应用于复杂封闭空间时,易受多径效应影响,导致图像存在大量虚像,严重影响判读。现有方法需要场景先验进行多径推算或通过子孔径加权融合抑制多径,但都难以准确区分多径虚像与目标图像。该文提出了一种新的多角度双层偏差度量方法,可有效获取多径虚像与目标间的特征差异。该方法首先采用大视角差对观测场景进行多角度观测,可充分利用多径虚像位置随观测角度变化,而实际目标位置保持不变的特性。然后使用双层偏差度量算法,该算法根据多径在多角度序列中的稀疏性,两次计算序列幅度值与序列均值的偏差,精准检测出稀疏、不稳定的多径成分并去除,对剩余稳定成分取均值。这样,在保留目标信息的同时有效抑制多径。最后,仿真和毫米波雷达实际数据处理验证了该文方法的有效性。 合成孔径雷达(SAR)具有全天时全天候非接触式监测的优势,是封闭空间安全监测的重要工具。然而,SAR应用于复杂封闭空间时,易受多径效应影响,导致图像存在大量虚像,严重影响判读。现有方法需要场景先验进行多径推算或通过子孔径加权融合抑制多径,但都难以准确区分多径虚像与目标图像。该文提出了一种新的多角度双层偏差度量方法,可有效获取多径虚像与目标间的特征差异。该方法首先采用大视角差对观测场景进行多角度观测,可充分利用多径虚像位置随观测角度变化,而实际目标位置保持不变的特性。然后使用双层偏差度量算法,该算法根据多径在多角度序列中的稀疏性,两次计算序列幅度值与序列均值的偏差,精准检测出稀疏、不稳定的多径成分并去除,对剩余稳定成分取均值。这样,在保留目标信息的同时有效抑制多径。最后,仿真和毫米波雷达实际数据处理验证了该文方法的有效性。
2024, 13(4): 777-790.
摘要:
随着合成孔径雷达(SAR)系统小型化技术、SAR三维成像技术的发展,当前已可利用无人机载小型化阵列干涉SAR实现城区三维成像,在城市测绘、复杂环境重建等领域具有重要应用前景。然而,SAR进行城市场景三维成像时,回波中存在多径信号,会导致成像结果解译困难,却也给非视距区域隐蔽目标的发现提供了重要手段。为此,该文针对低空无人机载阵列干涉SAR建筑区三维成像中的非视距目标进行了研究,建立了非视距目标在低空阵列干涉三维成像下的多径模型,给出了城市峡谷区域利用多径扩大可视范围的计算方法,并基于建筑平面拟合提出了非视距目标重定位方法。无人机载阵列干涉SAR的仿真和实际数据处理验证表明,所提出的方法可以对城市峡谷非视距目标进行有效的三维成像和重定位,重定位误差小于0.5 m,实现了对非视距区域信息的获取。 随着合成孔径雷达(SAR)系统小型化技术、SAR三维成像技术的发展,当前已可利用无人机载小型化阵列干涉SAR实现城区三维成像,在城市测绘、复杂环境重建等领域具有重要应用前景。然而,SAR进行城市场景三维成像时,回波中存在多径信号,会导致成像结果解译困难,却也给非视距区域隐蔽目标的发现提供了重要手段。为此,该文针对低空无人机载阵列干涉SAR建筑区三维成像中的非视距目标进行了研究,建立了非视距目标在低空阵列干涉三维成像下的多径模型,给出了城市峡谷区域利用多径扩大可视范围的计算方法,并基于建筑平面拟合提出了非视距目标重定位方法。无人机载阵列干涉SAR的仿真和实际数据处理验证表明,所提出的方法可以对城市峡谷非视距目标进行有效的三维成像和重定位,重定位误差小于0.5 m,实现了对非视距区域信息的获取。
随着合成孔径雷达(SAR)系统小型化技术、SAR三维成像技术的发展,当前已可利用无人机载小型化阵列干涉SAR实现城区三维成像,在城市测绘、复杂环境重建等领域具有重要应用前景。然而,SAR进行城市场景三维成像时,回波中存在多径信号,会导致成像结果解译困难,却也给非视距区域隐蔽目标的发现提供了重要手段。为此,该文针对低空无人机载阵列干涉SAR建筑区三维成像中的非视距目标进行了研究,建立了非视距目标在低空阵列干涉三维成像下的多径模型,给出了城市峡谷区域利用多径扩大可视范围的计算方法,并基于建筑平面拟合提出了非视距目标重定位方法。无人机载阵列干涉SAR的仿真和实际数据处理验证表明,所提出的方法可以对城市峡谷非视距目标进行有效的三维成像和重定位,重定位误差小于0.5 m,实现了对非视距区域信息的获取。 随着合成孔径雷达(SAR)系统小型化技术、SAR三维成像技术的发展,当前已可利用无人机载小型化阵列干涉SAR实现城区三维成像,在城市测绘、复杂环境重建等领域具有重要应用前景。然而,SAR进行城市场景三维成像时,回波中存在多径信号,会导致成像结果解译困难,却也给非视距区域隐蔽目标的发现提供了重要手段。为此,该文针对低空无人机载阵列干涉SAR建筑区三维成像中的非视距目标进行了研究,建立了非视距目标在低空阵列干涉三维成像下的多径模型,给出了城市峡谷区域利用多径扩大可视范围的计算方法,并基于建筑平面拟合提出了非视距目标重定位方法。无人机载阵列干涉SAR的仿真和实际数据处理验证表明,所提出的方法可以对城市峡谷非视距目标进行有效的三维成像和重定位,重定位误差小于0.5 m,实现了对非视距区域信息的获取。
2024, 13(4): 791-806.
摘要:
非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。 非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。
非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。 非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。
2024, 13(4): 807-821.
摘要:
针对带标注实测样本受限情况下的遮蔽多目标高分辨成像问题,提出一种基于迁移学习的穿墙雷达成像方法。首先,搭建生成对抗子网络实现带标签仿真数据到实测数据的迁移,解决带标签数据制作困难的问题;然后,联合使用注意力机制、自适应残差块及多尺度判别器提高图像迁移质量,引入结构一致性损失函数减小图像间的感知差异;最后,利用带标签数据训练穿墙雷达目标成像子网络,实现穿墙雷达多目标高分辨成像。实验结果表明,所提方法能有效缩小仿真图像和实测图像域间差异,实现穿墙雷达带标签伪实测图像生成,系统性解决了穿墙雷达遮蔽目标成像面临的旁/栅瓣鬼影干扰、目标图像散焦、多目标互扰等问题,在单、双和三目标场景下成像准确率分别达到98.24%, 90.97%和55.17%,相比于传统CycleGAN方法,所提方法成像准确率分别提升了2.29%, 40.28%和15.51%。 针对带标注实测样本受限情况下的遮蔽多目标高分辨成像问题,提出一种基于迁移学习的穿墙雷达成像方法。首先,搭建生成对抗子网络实现带标签仿真数据到实测数据的迁移,解决带标签数据制作困难的问题;然后,联合使用注意力机制、自适应残差块及多尺度判别器提高图像迁移质量,引入结构一致性损失函数减小图像间的感知差异;最后,利用带标签数据训练穿墙雷达目标成像子网络,实现穿墙雷达多目标高分辨成像。实验结果表明,所提方法能有效缩小仿真图像和实测图像域间差异,实现穿墙雷达带标签伪实测图像生成,系统性解决了穿墙雷达遮蔽目标成像面临的旁/栅瓣鬼影干扰、目标图像散焦、多目标互扰等问题,在单、双和三目标场景下成像准确率分别达到98.24%, 90.97%和55.17%,相比于传统CycleGAN方法,所提方法成像准确率分别提升了2.29%, 40.28%和15.51%。
针对带标注实测样本受限情况下的遮蔽多目标高分辨成像问题,提出一种基于迁移学习的穿墙雷达成像方法。首先,搭建生成对抗子网络实现带标签仿真数据到实测数据的迁移,解决带标签数据制作困难的问题;然后,联合使用注意力机制、自适应残差块及多尺度判别器提高图像迁移质量,引入结构一致性损失函数减小图像间的感知差异;最后,利用带标签数据训练穿墙雷达目标成像子网络,实现穿墙雷达多目标高分辨成像。实验结果表明,所提方法能有效缩小仿真图像和实测图像域间差异,实现穿墙雷达带标签伪实测图像生成,系统性解决了穿墙雷达遮蔽目标成像面临的旁/栅瓣鬼影干扰、目标图像散焦、多目标互扰等问题,在单、双和三目标场景下成像准确率分别达到98.24%, 90.97%和55.17%,相比于传统CycleGAN方法,所提方法成像准确率分别提升了2.29%, 40.28%和15.51%。 针对带标注实测样本受限情况下的遮蔽多目标高分辨成像问题,提出一种基于迁移学习的穿墙雷达成像方法。首先,搭建生成对抗子网络实现带标签仿真数据到实测数据的迁移,解决带标签数据制作困难的问题;然后,联合使用注意力机制、自适应残差块及多尺度判别器提高图像迁移质量,引入结构一致性损失函数减小图像间的感知差异;最后,利用带标签数据训练穿墙雷达目标成像子网络,实现穿墙雷达多目标高分辨成像。实验结果表明,所提方法能有效缩小仿真图像和实测图像域间差异,实现穿墙雷达带标签伪实测图像生成,系统性解决了穿墙雷达遮蔽目标成像面临的旁/栅瓣鬼影干扰、目标图像散焦、多目标互扰等问题,在单、双和三目标场景下成像准确率分别达到98.24%, 90.97%和55.17%,相比于传统CycleGAN方法,所提方法成像准确率分别提升了2.29%, 40.28%和15.51%。
2024, 13(4): 822-837.
摘要:
超宽带穿墙雷达具备穿透墙体的能力,结合多输入多输出(MIMO)技术可以实现墙体后侧隐蔽目标的成像,为建筑物内人员检测和定位提供了丰富的信息。该文基于调频连续波(FMCW)体制下的多发多收超宽带穿墙雷达系统,提出了一种闭环干涉校准方法,校正了由系统内部误差产生的图像散焦。墙体的存在会导致目标成像位置偏离真实位置,该文推导了联合通道和像素点的三维墙体补偿算法,并基于其几何特性,提出快速重聚焦算法。首先去除墙体影响、确定目标存在区域;鉴于区域几何特性,选择适应区域形状的球坐标网格划分;分区域进行局部重聚焦,避免了因电磁波衰减导致成像结果中出现强目标掩盖弱目标的现象,并且球坐标形式的网格划分和局部成像大大缩减了算法耗时。通过仿真分析与实验验证,该文提出的系统校准方法能有效补偿系统误差,快速重聚焦算法可以实现墙后人体多目标三维定位,各维度定位精度优于10 cm,计算效率相对其余算法提升了5倍左右。从目标检测概率方面,所提算法相比其余算法不会出现弱目标的漏检。 超宽带穿墙雷达具备穿透墙体的能力,结合多输入多输出(MIMO)技术可以实现墙体后侧隐蔽目标的成像,为建筑物内人员检测和定位提供了丰富的信息。该文基于调频连续波(FMCW)体制下的多发多收超宽带穿墙雷达系统,提出了一种闭环干涉校准方法,校正了由系统内部误差产生的图像散焦。墙体的存在会导致目标成像位置偏离真实位置,该文推导了联合通道和像素点的三维墙体补偿算法,并基于其几何特性,提出快速重聚焦算法。首先去除墙体影响、确定目标存在区域;鉴于区域几何特性,选择适应区域形状的球坐标网格划分;分区域进行局部重聚焦,避免了因电磁波衰减导致成像结果中出现强目标掩盖弱目标的现象,并且球坐标形式的网格划分和局部成像大大缩减了算法耗时。通过仿真分析与实验验证,该文提出的系统校准方法能有效补偿系统误差,快速重聚焦算法可以实现墙后人体多目标三维定位,各维度定位精度优于10 cm,计算效率相对其余算法提升了5倍左右。从目标检测概率方面,所提算法相比其余算法不会出现弱目标的漏检。
超宽带穿墙雷达具备穿透墙体的能力,结合多输入多输出(MIMO)技术可以实现墙体后侧隐蔽目标的成像,为建筑物内人员检测和定位提供了丰富的信息。该文基于调频连续波(FMCW)体制下的多发多收超宽带穿墙雷达系统,提出了一种闭环干涉校准方法,校正了由系统内部误差产生的图像散焦。墙体的存在会导致目标成像位置偏离真实位置,该文推导了联合通道和像素点的三维墙体补偿算法,并基于其几何特性,提出快速重聚焦算法。首先去除墙体影响、确定目标存在区域;鉴于区域几何特性,选择适应区域形状的球坐标网格划分;分区域进行局部重聚焦,避免了因电磁波衰减导致成像结果中出现强目标掩盖弱目标的现象,并且球坐标形式的网格划分和局部成像大大缩减了算法耗时。通过仿真分析与实验验证,该文提出的系统校准方法能有效补偿系统误差,快速重聚焦算法可以实现墙后人体多目标三维定位,各维度定位精度优于10 cm,计算效率相对其余算法提升了5倍左右。从目标检测概率方面,所提算法相比其余算法不会出现弱目标的漏检。 超宽带穿墙雷达具备穿透墙体的能力,结合多输入多输出(MIMO)技术可以实现墙体后侧隐蔽目标的成像,为建筑物内人员检测和定位提供了丰富的信息。该文基于调频连续波(FMCW)体制下的多发多收超宽带穿墙雷达系统,提出了一种闭环干涉校准方法,校正了由系统内部误差产生的图像散焦。墙体的存在会导致目标成像位置偏离真实位置,该文推导了联合通道和像素点的三维墙体补偿算法,并基于其几何特性,提出快速重聚焦算法。首先去除墙体影响、确定目标存在区域;鉴于区域几何特性,选择适应区域形状的球坐标网格划分;分区域进行局部重聚焦,避免了因电磁波衰减导致成像结果中出现强目标掩盖弱目标的现象,并且球坐标形式的网格划分和局部成像大大缩减了算法耗时。通过仿真分析与实验验证,该文提出的系统校准方法能有效补偿系统误差,快速重聚焦算法可以实现墙后人体多目标三维定位,各维度定位精度优于10 cm,计算效率相对其余算法提升了5倍左右。从目标检测概率方面,所提算法相比其余算法不会出现弱目标的漏检。
2024, 13(4): 838-851.
摘要:
多普勒穿墙雷达在定位墙后目标时,存在以下两个难点:(1)准确获取频率混叠区域目标瞬时频率;(2)通过获取精确的墙体参数来减小墙体对定位造成的影响。针对以上问题该文提出了一种结合Hough变换和支持向量回归-BP神经网络的目标定位算法。该文首先设计了一种多视角融合穿墙目标探测模型框架,通过获取不同视角下的目标位置来提供辅助估计墙体参数信息;其次,结合差分进化算法和切比雪夫插值多项式提出了一种目标瞬时频率曲线的高精度提取和估计算法;最后,利用估计的墙体参数信息,提出了一种基于BP神经网络的目标运动轨迹补偿算法,抑制了障碍物对目标定位结果的扭曲影响,实现了对墙后目标的精确定位。实验结果表明,相较于传统的短时傅里叶方法,该文所述方法可以准确提取时频混叠区域的目标瞬时频率曲线并减小墙体造成的影响,从而实现墙后多目标的准确定位,整体定位精度提升了约85%。 多普勒穿墙雷达在定位墙后目标时,存在以下两个难点:(1)准确获取频率混叠区域目标瞬时频率;(2)通过获取精确的墙体参数来减小墙体对定位造成的影响。针对以上问题该文提出了一种结合Hough变换和支持向量回归-BP神经网络的目标定位算法。该文首先设计了一种多视角融合穿墙目标探测模型框架,通过获取不同视角下的目标位置来提供辅助估计墙体参数信息;其次,结合差分进化算法和切比雪夫插值多项式提出了一种目标瞬时频率曲线的高精度提取和估计算法;最后,利用估计的墙体参数信息,提出了一种基于BP神经网络的目标运动轨迹补偿算法,抑制了障碍物对目标定位结果的扭曲影响,实现了对墙后目标的精确定位。实验结果表明,相较于传统的短时傅里叶方法,该文所述方法可以准确提取时频混叠区域的目标瞬时频率曲线并减小墙体造成的影响,从而实现墙后多目标的准确定位,整体定位精度提升了约85%。
多普勒穿墙雷达在定位墙后目标时,存在以下两个难点:(1)准确获取频率混叠区域目标瞬时频率;(2)通过获取精确的墙体参数来减小墙体对定位造成的影响。针对以上问题该文提出了一种结合Hough变换和支持向量回归-BP神经网络的目标定位算法。该文首先设计了一种多视角融合穿墙目标探测模型框架,通过获取不同视角下的目标位置来提供辅助估计墙体参数信息;其次,结合差分进化算法和切比雪夫插值多项式提出了一种目标瞬时频率曲线的高精度提取和估计算法;最后,利用估计的墙体参数信息,提出了一种基于BP神经网络的目标运动轨迹补偿算法,抑制了障碍物对目标定位结果的扭曲影响,实现了对墙后目标的精确定位。实验结果表明,相较于传统的短时傅里叶方法,该文所述方法可以准确提取时频混叠区域的目标瞬时频率曲线并减小墙体造成的影响,从而实现墙后多目标的准确定位,整体定位精度提升了约85%。 多普勒穿墙雷达在定位墙后目标时,存在以下两个难点:(1)准确获取频率混叠区域目标瞬时频率;(2)通过获取精确的墙体参数来减小墙体对定位造成的影响。针对以上问题该文提出了一种结合Hough变换和支持向量回归-BP神经网络的目标定位算法。该文首先设计了一种多视角融合穿墙目标探测模型框架,通过获取不同视角下的目标位置来提供辅助估计墙体参数信息;其次,结合差分进化算法和切比雪夫插值多项式提出了一种目标瞬时频率曲线的高精度提取和估计算法;最后,利用估计的墙体参数信息,提出了一种基于BP神经网络的目标运动轨迹补偿算法,抑制了障碍物对目标定位结果的扭曲影响,实现了对墙后目标的精确定位。实验结果表明,相较于传统的短时傅里叶方法,该文所述方法可以准确提取时频混叠区域的目标瞬时频率曲线并减小墙体造成的影响,从而实现墙后多目标的准确定位,整体定位精度提升了约85%。
2024, 13(4): 852-865.
摘要:
逆合成孔径雷达(ISAR)在对空中目标成像时,目标自身的转动、振动等局部微动将产生微多普勒效应,回波将附加额外的多普勒调制,造成频谱展宽。在超高分辨条件下,这一微动特性将会影响主体散射点的聚焦,导致目标图像局部散焦模糊,严重影响成像质量。并且,微多普勒相位还具有时变非平稳特性,难以从ISAR目标回波中准确估计或分离出微多普勒。为了解决上述问题,该文利用目标主体回波和微多普勒分量的时频分布差异,提出一种基于变分模态分解(VMD)与优选的非参数化方法抑制了回波中的微多普勒分量,消除了微多普勒对成像的影响,获得超高分辨率的无人机ISAR成像结果。该文首先引入VMD算法并将其扩展到复数域,将ISAR目标回波数据沿方位向分解为若干个中心频率均匀分布于多普勒采样带宽中的模函数,在此基础上利用图像熵指标优化分解参数和筛选成像模态,以保证微多普勒的良好抑制和主体回波的较完整保留。与现有基于经验模态分解(EMD)和局部均值分解(LMD)的方法相比,所提方法在超大带宽条件下对旋翼微动引起的微多普勒干扰有着更为出色的抑制效果,而且对机身部分的保留更为完整。最后,通过仿真对比和超宽带微波光子ISAR无人机实测数据处理,证明了该文所提方法的有效性和优势。 逆合成孔径雷达(ISAR)在对空中目标成像时,目标自身的转动、振动等局部微动将产生微多普勒效应,回波将附加额外的多普勒调制,造成频谱展宽。在超高分辨条件下,这一微动特性将会影响主体散射点的聚焦,导致目标图像局部散焦模糊,严重影响成像质量。并且,微多普勒相位还具有时变非平稳特性,难以从ISAR目标回波中准确估计或分离出微多普勒。为了解决上述问题,该文利用目标主体回波和微多普勒分量的时频分布差异,提出一种基于变分模态分解(VMD)与优选的非参数化方法抑制了回波中的微多普勒分量,消除了微多普勒对成像的影响,获得超高分辨率的无人机ISAR成像结果。该文首先引入VMD算法并将其扩展到复数域,将ISAR目标回波数据沿方位向分解为若干个中心频率均匀分布于多普勒采样带宽中的模函数,在此基础上利用图像熵指标优化分解参数和筛选成像模态,以保证微多普勒的良好抑制和主体回波的较完整保留。与现有基于经验模态分解(EMD)和局部均值分解(LMD)的方法相比,所提方法在超大带宽条件下对旋翼微动引起的微多普勒干扰有着更为出色的抑制效果,而且对机身部分的保留更为完整。最后,通过仿真对比和超宽带微波光子ISAR无人机实测数据处理,证明了该文所提方法的有效性和优势。
逆合成孔径雷达(ISAR)在对空中目标成像时,目标自身的转动、振动等局部微动将产生微多普勒效应,回波将附加额外的多普勒调制,造成频谱展宽。在超高分辨条件下,这一微动特性将会影响主体散射点的聚焦,导致目标图像局部散焦模糊,严重影响成像质量。并且,微多普勒相位还具有时变非平稳特性,难以从ISAR目标回波中准确估计或分离出微多普勒。为了解决上述问题,该文利用目标主体回波和微多普勒分量的时频分布差异,提出一种基于变分模态分解(VMD)与优选的非参数化方法抑制了回波中的微多普勒分量,消除了微多普勒对成像的影响,获得超高分辨率的无人机ISAR成像结果。该文首先引入VMD算法并将其扩展到复数域,将ISAR目标回波数据沿方位向分解为若干个中心频率均匀分布于多普勒采样带宽中的模函数,在此基础上利用图像熵指标优化分解参数和筛选成像模态,以保证微多普勒的良好抑制和主体回波的较完整保留。与现有基于经验模态分解(EMD)和局部均值分解(LMD)的方法相比,所提方法在超大带宽条件下对旋翼微动引起的微多普勒干扰有着更为出色的抑制效果,而且对机身部分的保留更为完整。最后,通过仿真对比和超宽带微波光子ISAR无人机实测数据处理,证明了该文所提方法的有效性和优势。 逆合成孔径雷达(ISAR)在对空中目标成像时,目标自身的转动、振动等局部微动将产生微多普勒效应,回波将附加额外的多普勒调制,造成频谱展宽。在超高分辨条件下,这一微动特性将会影响主体散射点的聚焦,导致目标图像局部散焦模糊,严重影响成像质量。并且,微多普勒相位还具有时变非平稳特性,难以从ISAR目标回波中准确估计或分离出微多普勒。为了解决上述问题,该文利用目标主体回波和微多普勒分量的时频分布差异,提出一种基于变分模态分解(VMD)与优选的非参数化方法抑制了回波中的微多普勒分量,消除了微多普勒对成像的影响,获得超高分辨率的无人机ISAR成像结果。该文首先引入VMD算法并将其扩展到复数域,将ISAR目标回波数据沿方位向分解为若干个中心频率均匀分布于多普勒采样带宽中的模函数,在此基础上利用图像熵指标优化分解参数和筛选成像模态,以保证微多普勒的良好抑制和主体回波的较完整保留。与现有基于经验模态分解(EMD)和局部均值分解(LMD)的方法相比,所提方法在超大带宽条件下对旋翼微动引起的微多普勒干扰有着更为出色的抑制效果,而且对机身部分的保留更为完整。最后,通过仿真对比和超宽带微波光子ISAR无人机实测数据处理,证明了该文所提方法的有效性和优势。
2024, 13(4): 866-884.
摘要:
随着高分辨率合成孔径雷达(SAR)卫星的陆续发射,对天气条件多变的海岛区域进行全天候、全时段的高精度观测已变得可行。作为多种遥感应用的关键前置步骤正射校正,依赖于高精度控制点来纠正SAR影像的几何定位误差。然而,在海岛区域获取符合SAR校正要求的人工控制点不仅成本高,且风险大。为了应对这一挑战,该文首先提出了一种光学与SAR异源影像的快速配准算法,然后基于光学参考底图自动提取控制点,实现了海岛区域SAR影像的正射校正。所提出的配准算法分为两个阶段:首先构建异源影像的共性密集特征,然后在降采样后的特征上进行逐像素匹配,避免了异源影像特征点重复性低的问题。为了降低匹配复杂度,引入了海陆分割掩模以限定搜索范围。接着,对初步匹配点进行局部精细匹配,以减少降采样带来的不准确性。同时,引入海岸线均匀采样点以提升匹配结果的均匀性,并通过分段线性变换模型生成正射影像,确保了稀疏岛屿区域的整体校正精度。该算法在多景海岛区域的高分辨率SAR影像上表现出色,平均定位误差为3.2 m,整景校正时间仅需17.3 s,均优于现有多种先进的异源配准与校正算法,显示出其在工程应用中的巨大潜力。 随着高分辨率合成孔径雷达(SAR)卫星的陆续发射,对天气条件多变的海岛区域进行全天候、全时段的高精度观测已变得可行。作为多种遥感应用的关键前置步骤正射校正,依赖于高精度控制点来纠正SAR影像的几何定位误差。然而,在海岛区域获取符合SAR校正要求的人工控制点不仅成本高,且风险大。为了应对这一挑战,该文首先提出了一种光学与SAR异源影像的快速配准算法,然后基于光学参考底图自动提取控制点,实现了海岛区域SAR影像的正射校正。所提出的配准算法分为两个阶段:首先构建异源影像的共性密集特征,然后在降采样后的特征上进行逐像素匹配,避免了异源影像特征点重复性低的问题。为了降低匹配复杂度,引入了海陆分割掩模以限定搜索范围。接着,对初步匹配点进行局部精细匹配,以减少降采样带来的不准确性。同时,引入海岸线均匀采样点以提升匹配结果的均匀性,并通过分段线性变换模型生成正射影像,确保了稀疏岛屿区域的整体校正精度。该算法在多景海岛区域的高分辨率SAR影像上表现出色,平均定位误差为3.2 m,整景校正时间仅需17.3 s,均优于现有多种先进的异源配准与校正算法,显示出其在工程应用中的巨大潜力。
随着高分辨率合成孔径雷达(SAR)卫星的陆续发射,对天气条件多变的海岛区域进行全天候、全时段的高精度观测已变得可行。作为多种遥感应用的关键前置步骤正射校正,依赖于高精度控制点来纠正SAR影像的几何定位误差。然而,在海岛区域获取符合SAR校正要求的人工控制点不仅成本高,且风险大。为了应对这一挑战,该文首先提出了一种光学与SAR异源影像的快速配准算法,然后基于光学参考底图自动提取控制点,实现了海岛区域SAR影像的正射校正。所提出的配准算法分为两个阶段:首先构建异源影像的共性密集特征,然后在降采样后的特征上进行逐像素匹配,避免了异源影像特征点重复性低的问题。为了降低匹配复杂度,引入了海陆分割掩模以限定搜索范围。接着,对初步匹配点进行局部精细匹配,以减少降采样带来的不准确性。同时,引入海岸线均匀采样点以提升匹配结果的均匀性,并通过分段线性变换模型生成正射影像,确保了稀疏岛屿区域的整体校正精度。该算法在多景海岛区域的高分辨率SAR影像上表现出色,平均定位误差为3.2 m,整景校正时间仅需17.3 s,均优于现有多种先进的异源配准与校正算法,显示出其在工程应用中的巨大潜力。 随着高分辨率合成孔径雷达(SAR)卫星的陆续发射,对天气条件多变的海岛区域进行全天候、全时段的高精度观测已变得可行。作为多种遥感应用的关键前置步骤正射校正,依赖于高精度控制点来纠正SAR影像的几何定位误差。然而,在海岛区域获取符合SAR校正要求的人工控制点不仅成本高,且风险大。为了应对这一挑战,该文首先提出了一种光学与SAR异源影像的快速配准算法,然后基于光学参考底图自动提取控制点,实现了海岛区域SAR影像的正射校正。所提出的配准算法分为两个阶段:首先构建异源影像的共性密集特征,然后在降采样后的特征上进行逐像素匹配,避免了异源影像特征点重复性低的问题。为了降低匹配复杂度,引入了海陆分割掩模以限定搜索范围。接着,对初步匹配点进行局部精细匹配,以减少降采样带来的不准确性。同时,引入海岸线均匀采样点以提升匹配结果的均匀性,并通过分段线性变换模型生成正射影像,确保了稀疏岛屿区域的整体校正精度。该算法在多景海岛区域的高分辨率SAR影像上表现出色,平均定位误差为3.2 m,整景校正时间仅需17.3 s,均优于现有多种先进的异源配准与校正算法,显示出其在工程应用中的巨大潜力。
2024, 13(4): 885-903.
摘要:
在遥感图像舰船检测任务中,可见光图像细节和纹理信息丰富,但成像质量易受云雾干扰,合成孔径雷达(SAR)图像具有全天时和全天候的特点,但图像质量易受复杂海杂波影响。结合可见光和SAR图像优势的协同检测方法可以提高舰船目标的检测性能。针对在前后时相图像中,舰船目标在极小邻域范围内发生轻微偏移的场景,该文提出一种基于邻域显著性的可见光和SAR多源异质遥感图像舰船协同检测方法。首先,通过可见光和SAR的协同海陆分割降低陆地区域的干扰,并通过RetinaNet和YOLOv5s分别进行可见光和SAR图像的单源目标初步检测;其次,提出了基于单源检测结果对遥感图像邻域开窗进行邻域显著性目标二次检测的多源协同舰船目标检测策略,实现可见光和SAR异质图像的优势互补,减少舰船目标漏检、虚警以提升检测性能。在2022年烟台地区拍摄的可见光和SAR遥感图像数据上,该方法的检测精度AP50相比现有舰船检测方法提升了1.9%以上,验证了所提方法的有效性和先进性。 在遥感图像舰船检测任务中,可见光图像细节和纹理信息丰富,但成像质量易受云雾干扰,合成孔径雷达(SAR)图像具有全天时和全天候的特点,但图像质量易受复杂海杂波影响。结合可见光和SAR图像优势的协同检测方法可以提高舰船目标的检测性能。针对在前后时相图像中,舰船目标在极小邻域范围内发生轻微偏移的场景,该文提出一种基于邻域显著性的可见光和SAR多源异质遥感图像舰船协同检测方法。首先,通过可见光和SAR的协同海陆分割降低陆地区域的干扰,并通过RetinaNet和YOLOv5s分别进行可见光和SAR图像的单源目标初步检测;其次,提出了基于单源检测结果对遥感图像邻域开窗进行邻域显著性目标二次检测的多源协同舰船目标检测策略,实现可见光和SAR异质图像的优势互补,减少舰船目标漏检、虚警以提升检测性能。在2022年烟台地区拍摄的可见光和SAR遥感图像数据上,该方法的检测精度AP50相比现有舰船检测方法提升了1.9%以上,验证了所提方法的有效性和先进性。
在遥感图像舰船检测任务中,可见光图像细节和纹理信息丰富,但成像质量易受云雾干扰,合成孔径雷达(SAR)图像具有全天时和全天候的特点,但图像质量易受复杂海杂波影响。结合可见光和SAR图像优势的协同检测方法可以提高舰船目标的检测性能。针对在前后时相图像中,舰船目标在极小邻域范围内发生轻微偏移的场景,该文提出一种基于邻域显著性的可见光和SAR多源异质遥感图像舰船协同检测方法。首先,通过可见光和SAR的协同海陆分割降低陆地区域的干扰,并通过RetinaNet和YOLOv5s分别进行可见光和SAR图像的单源目标初步检测;其次,提出了基于单源检测结果对遥感图像邻域开窗进行邻域显著性目标二次检测的多源协同舰船目标检测策略,实现可见光和SAR异质图像的优势互补,减少舰船目标漏检、虚警以提升检测性能。在2022年烟台地区拍摄的可见光和SAR遥感图像数据上,该方法的检测精度AP50相比现有舰船检测方法提升了1.9%以上,验证了所提方法的有效性和先进性。 在遥感图像舰船检测任务中,可见光图像细节和纹理信息丰富,但成像质量易受云雾干扰,合成孔径雷达(SAR)图像具有全天时和全天候的特点,但图像质量易受复杂海杂波影响。结合可见光和SAR图像优势的协同检测方法可以提高舰船目标的检测性能。针对在前后时相图像中,舰船目标在极小邻域范围内发生轻微偏移的场景,该文提出一种基于邻域显著性的可见光和SAR多源异质遥感图像舰船协同检测方法。首先,通过可见光和SAR的协同海陆分割降低陆地区域的干扰,并通过RetinaNet和YOLOv5s分别进行可见光和SAR图像的单源目标初步检测;其次,提出了基于单源检测结果对遥感图像邻域开窗进行邻域显著性目标二次检测的多源协同舰船目标检测策略,实现可见光和SAR异质图像的优势互补,减少舰船目标漏检、虚警以提升检测性能。在2022年烟台地区拍摄的可见光和SAR遥感图像数据上,该方法的检测精度AP50相比现有舰船检测方法提升了1.9%以上,验证了所提方法的有效性和先进性。
2024, 13(4): 904-916.
摘要:
针对远距离非合作目标探测,现有太赫兹雷达由于受到发射机功率低、大气衰减效应等因素影响,其作用距离有限,难以满足对目标的预警探测应用需求。为提升太赫兹雷达探测能力,该文研究了基于单光子探测技术的目标超灵敏探测方法,利用单光子探测器替代传统雷达接收机,有望显著提升太赫兹雷达的作用距离。首先,该文分析了太赫兹单光子雷达信号光子数的统计规律,从微观角度阐述了目标的回波特性,进一步,结合超导量子电容探测器的特点,建立了太赫兹单光子目标探测模型;此外,推导得到太赫兹单光子雷达目标检测性能数学表达式,并通过仿真实验对目标检测性能进行了验证和分析,获得了雷达检测性能曲线;最后开展了时间分辨太赫兹光子计数原理验证实验,通过回波脉冲计数的方式实现了目标高精度测距。该文工作将为太赫兹频段超灵敏探测技术及单光子雷达系统的研究与发展提供支撑。 针对远距离非合作目标探测,现有太赫兹雷达由于受到发射机功率低、大气衰减效应等因素影响,其作用距离有限,难以满足对目标的预警探测应用需求。为提升太赫兹雷达探测能力,该文研究了基于单光子探测技术的目标超灵敏探测方法,利用单光子探测器替代传统雷达接收机,有望显著提升太赫兹雷达的作用距离。首先,该文分析了太赫兹单光子雷达信号光子数的统计规律,从微观角度阐述了目标的回波特性,进一步,结合超导量子电容探测器的特点,建立了太赫兹单光子目标探测模型;此外,推导得到太赫兹单光子雷达目标检测性能数学表达式,并通过仿真实验对目标检测性能进行了验证和分析,获得了雷达检测性能曲线;最后开展了时间分辨太赫兹光子计数原理验证实验,通过回波脉冲计数的方式实现了目标高精度测距。该文工作将为太赫兹频段超灵敏探测技术及单光子雷达系统的研究与发展提供支撑。
针对远距离非合作目标探测,现有太赫兹雷达由于受到发射机功率低、大气衰减效应等因素影响,其作用距离有限,难以满足对目标的预警探测应用需求。为提升太赫兹雷达探测能力,该文研究了基于单光子探测技术的目标超灵敏探测方法,利用单光子探测器替代传统雷达接收机,有望显著提升太赫兹雷达的作用距离。首先,该文分析了太赫兹单光子雷达信号光子数的统计规律,从微观角度阐述了目标的回波特性,进一步,结合超导量子电容探测器的特点,建立了太赫兹单光子目标探测模型;此外,推导得到太赫兹单光子雷达目标检测性能数学表达式,并通过仿真实验对目标检测性能进行了验证和分析,获得了雷达检测性能曲线;最后开展了时间分辨太赫兹光子计数原理验证实验,通过回波脉冲计数的方式实现了目标高精度测距。该文工作将为太赫兹频段超灵敏探测技术及单光子雷达系统的研究与发展提供支撑。 针对远距离非合作目标探测,现有太赫兹雷达由于受到发射机功率低、大气衰减效应等因素影响,其作用距离有限,难以满足对目标的预警探测应用需求。为提升太赫兹雷达探测能力,该文研究了基于单光子探测技术的目标超灵敏探测方法,利用单光子探测器替代传统雷达接收机,有望显著提升太赫兹雷达的作用距离。首先,该文分析了太赫兹单光子雷达信号光子数的统计规律,从微观角度阐述了目标的回波特性,进一步,结合超导量子电容探测器的特点,建立了太赫兹单光子目标探测模型;此外,推导得到太赫兹单光子雷达目标检测性能数学表达式,并通过仿真实验对目标检测性能进行了验证和分析,获得了雷达检测性能曲线;最后开展了时间分辨太赫兹光子计数原理验证实验,通过回波脉冲计数的方式实现了目标高精度测距。该文工作将为太赫兹频段超灵敏探测技术及单光子雷达系统的研究与发展提供支撑。
2024, 13(4): 917-928.
摘要:
在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。 在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。
在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。 在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。
2024, 13(4): 929-940.
摘要:
聚焦雷达对抗中极化信息获取与利用的应用需求,该文研究了基于极化时变调控表面的有源欺骗干扰辨识方法。首先,设计了一套在9.6~10.1 GHz频带内支持3 bit相位量化的各向异性相位调制表面,通过优化相位调制编码序列,实现了极化态按需调控。然后,将极化调控表面加装在单极化雷达天线上,使天线发射和接收电磁波的极化态沿特定极化轨道变化,通过提取目标与有源欺骗干扰的极化域差异,实现两者辨识。仿真分析表明,在3种不同的极化轨道约束下,干扰与目标均具有显著的聚类效应,可获得稳定的干扰辨识效果。相较于依赖双极化或全极化雷达体制的干扰辨识方法,该文所提方法兼具低成本与高效性,在雷达抗干扰中具有很大的应用潜力。 聚焦雷达对抗中极化信息获取与利用的应用需求,该文研究了基于极化时变调控表面的有源欺骗干扰辨识方法。首先,设计了一套在9.6~10.1 GHz频带内支持3 bit相位量化的各向异性相位调制表面,通过优化相位调制编码序列,实现了极化态按需调控。然后,将极化调控表面加装在单极化雷达天线上,使天线发射和接收电磁波的极化态沿特定极化轨道变化,通过提取目标与有源欺骗干扰的极化域差异,实现两者辨识。仿真分析表明,在3种不同的极化轨道约束下,干扰与目标均具有显著的聚类效应,可获得稳定的干扰辨识效果。相较于依赖双极化或全极化雷达体制的干扰辨识方法,该文所提方法兼具低成本与高效性,在雷达抗干扰中具有很大的应用潜力。
聚焦雷达对抗中极化信息获取与利用的应用需求,该文研究了基于极化时变调控表面的有源欺骗干扰辨识方法。首先,设计了一套在9.6~10.1 GHz频带内支持3 bit相位量化的各向异性相位调制表面,通过优化相位调制编码序列,实现了极化态按需调控。然后,将极化调控表面加装在单极化雷达天线上,使天线发射和接收电磁波的极化态沿特定极化轨道变化,通过提取目标与有源欺骗干扰的极化域差异,实现两者辨识。仿真分析表明,在3种不同的极化轨道约束下,干扰与目标均具有显著的聚类效应,可获得稳定的干扰辨识效果。相较于依赖双极化或全极化雷达体制的干扰辨识方法,该文所提方法兼具低成本与高效性,在雷达抗干扰中具有很大的应用潜力。 聚焦雷达对抗中极化信息获取与利用的应用需求,该文研究了基于极化时变调控表面的有源欺骗干扰辨识方法。首先,设计了一套在9.6~10.1 GHz频带内支持3 bit相位量化的各向异性相位调制表面,通过优化相位调制编码序列,实现了极化态按需调控。然后,将极化调控表面加装在单极化雷达天线上,使天线发射和接收电磁波的极化态沿特定极化轨道变化,通过提取目标与有源欺骗干扰的极化域差异,实现两者辨识。仿真分析表明,在3种不同的极化轨道约束下,干扰与目标均具有显著的聚类效应,可获得稳定的干扰辨识效果。相较于依赖双极化或全极化雷达体制的干扰辨识方法,该文所提方法兼具低成本与高效性,在雷达抗干扰中具有很大的应用潜力。