基于仿真样本迁移学习的穿墙雷达高分辨成像方法

陈一凡 刘剑刚 贾勇 郭世盛 崔国龙

陈一凡, 刘剑刚, 贾勇, 等. 基于仿真样本迁移学习的穿墙雷达高分辨成像方法[J]. 雷达学报(中英文), 2024, 13(4): 807–821. doi: 10.12000/JR24049
引用本文: 陈一凡, 刘剑刚, 贾勇, 等. 基于仿真样本迁移学习的穿墙雷达高分辨成像方法[J]. 雷达学报(中英文), 2024, 13(4): 807–821. doi: 10.12000/JR24049
CHEN Yifan, LIU Jiangang, JIA Yong, et al. High-resolution imaging method for through-the-wall radar based on transfer learning with simulation samples[J]. Journal of Radars, 2024, 13(4): 807–821. doi: 10.12000/JR24049
Citation: CHEN Yifan, LIU Jiangang, JIA Yong, et al. High-resolution imaging method for through-the-wall radar based on transfer learning with simulation samples[J]. Journal of Radars, 2024, 13(4): 807–821. doi: 10.12000/JR24049

基于仿真样本迁移学习的穿墙雷达高分辨成像方法

DOI: 10.12000/JR24049
基金项目: 四川省科技厅计划项目(2022YFS0531),国家自然科学基金(62001091), 衢州市政府资助项目(2022D008, 2022D005)
详细信息
    作者简介:

    陈一凡,硕士生,主要研究方向为穿墙雷达探测、智能信号处理

    刘剑刚,博士,主要研究方向为穿墙雷达探测、毫米波雷达感知

    贾 勇,博士,硕士生导师,主要研究方向为城市环境遮蔽目标探测、毫米波雷达感知

    郭世盛,博士,硕士生导师,主要研究方向为城市环境遮蔽目标探测、毫米波雷达感知

    崔国龙,博士,博士生导师,主要研究方向为认知雷达系统与信号处理、MIMO雷达、城市环境遮蔽目标探测技术与系统、阵列信号处理、认知电磁对抗技术、多功能一体化技术

    通讯作者:

    刘剑刚 jgliu@csj.uestc.edu.cn

    贾勇 jiayong2014@cdut.edu.cn

  • 责任主编:叶盛波 Corresponding Editor: YE Shengbo
  • 中图分类号: TN958

High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples

Funds: The Sichuan Science and Technology Program (2022YFS0531), The National Natural Science Foundation of China (62001091), The Municipal Government of Quzhou (2022D008, 2022D005)
More Information
  • 摘要: 针对带标注实测样本受限情况下的遮蔽多目标高分辨成像问题,提出一种基于迁移学习的穿墙雷达成像方法。首先,搭建生成对抗子网络实现带标签仿真数据到实测数据的迁移,解决带标签数据制作困难的问题;然后,联合使用注意力机制、自适应残差块及多尺度判别器提高图像迁移质量,引入结构一致性损失函数减小图像间的感知差异;最后,利用带标签数据训练穿墙雷达目标成像子网络,实现穿墙雷达多目标高分辨成像。实验结果表明,所提方法能有效缩小仿真图像和实测图像域间差异,实现穿墙雷达带标签伪实测图像生成,系统性解决了穿墙雷达遮蔽目标成像面临的旁/栅瓣鬼影干扰、目标图像散焦、多目标互扰等问题,在单、双和三目标场景下成像准确率分别达到98.24%, 90.97%和55.17%,相比于传统CycleGAN方法,所提方法成像准确率分别提升了2.29%, 40.28%和15.51%。

     

  • 图  1  MIMO穿墙成像雷达模型

    Figure  1.  A simple of Multiple-Input Multiple-Output (MIMO) Through-the-Wall Radar Imaging (TWRI)

    图  2  穿墙雷达成像结果

    Figure  2.  Results of MIMO TWRI

    图  3  模型框架示意图

    Figure  3.  Schematic diagram of the model framework

    图  4  域自适应模型框架示意图

    Figure  4.  Schematic diagram of the domain adaptation model framework

    图  5  带CAM类激活图的自适应残差块

    Figure  5.  Adaptive residual block with CAM class activation map

    图  6  多尺度判别器训练流程

    Figure  6.  Multi-scale discriminator training process

    图  7  Patch-GAN判别器结构

    Figure  7.  Discriminator structure of Patch-GAN

    图  8  穿墙雷达仿真图像

    Figure  8.  Simulation images of Through-the-Wall Radar (TWR)

    图  9  穿墙雷达探测场景

    Figure  9.  TWR detection scene

    图  10  穿墙雷达实测图像

    Figure  10.  TWR measured image

    图  11  迁移学习结果(黄色圆圈标记生成图像纹理差异部分)

    Figure  11.  Transfer learning results (yellow circle marking generates texture differences in the image)

    图  12  训练过程中图像FID得分(虚线为训练过程中实际FID得分曲线,实线表示经平滑处理后的FID得分曲线)

    Figure  12.  FID Score during training (the dotted line is the actual FID score curve during the training process, and the solid line represents the FID score curve after smoothing)

    图  13  不同方法训练目标成像网络的成像测试结果(图中大方框图像是小方框的放大图像)

    Figure  13.  Target imaging results of different method (the large box image in the figure is an enlarged image of the small box)

    表  1  仿真参数设置

    Table  1.   Parameter setting

    参数 取值 参数 取值
    中心频率f 1.5 GHz 墙体电导率${\sigma _{\mathrm{w}}}$ 0.1 S/m
    带宽B 1 GHz 人体目标半径r 10 cm
    墙体厚度h 0.2 cm 目标介电常数${\varepsilon _{\mathrm{r}}}$ 55
    发射阵元和相邻接收阵元间距${d_{{\mathrm{TR}}}}$ 0.15 接收阵元间距${d_{{\mathrm{RR}}}}$ 0.3
    发射天线数量M 2 接收天线数量N 8
    墙体介电常数${\varepsilon _{\mathrm{w}}}$ 5.0 目标电导率${\sigma _{\mathrm{r}}}$ 1.05 S/m
    下载: 导出CSV

    表  2  实验环境详细参数

    Table  2.   Detailed parameters of experimental environment

    实验环境 版本
    操作系统 Windows 10专业版64位
    CPU Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz
    GPU NAVIDIA RTX 3090
    Pytorch 1.10.2
    CUDA 11.6
    下载: 导出CSV

    表  3  不同模型的SSIM, FID, PSNR值

    Table  3.   SSIM, FID and PSNR values of different models

    模型 SSIM PSNR (dB) FID
    CycleGAN[28] 0.68 15.50 32.88
    ACycleGAN 0.73 18.04 23.50
    ADCycleGAN 0.75 17.72 22.39
    本文域自适应模型 0.80 18.78 18.07
    下载: 导出CSV

    表  4  不同方法目标成像准确率(%)

    Table  4.   Target imaging accuracy of different methods (%)

    方法 数据集 迁移学习 单目标准确率 双目标准确率 三目标准确率 总准确率
    1 实测数据集 × 94.72 34.90 17.24 48.95
    2 CycleGAN[28]迁移学习生成数据集 95.95 50.69 39.66 62.10
    3 本文域自适应模型迁移学习数据集 98.24 90.97 55.17 81.46
    下载: 导出CSV
  • [1] AMIN M G. Through-The-Wall Radar Imaging[M]. Boca Raton, USA: CRC Press, 2017: 7–11. doi: 10.1201/9781315218144.
    [2] NKWARI P K M, SINHA S, and FERREIRA H C. Through-the-wall radar imaging: A review[J]. IETE Technical Review, 2018, 35(6): 631–639. doi: 10.1080/02564602.2017.1364146.
    [3] 金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [4] CUI Guolong, KONG Lingjiang, and YANG Jianyu. A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 123–126. doi: 10.1109/APSAR.2007.4418570.
    [5] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105.

    WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105.
    [6] YOOON Y S and AMIN M G. Through-the-wall radar imaging using compressive sensing along temporal frequency domain[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 2806–2809. doi: 10.1109/ICASSP.2010.5496199.
    [7] LI Minchao, XI Xiaoli, SONG Zhongguo, et al. Multitarget time-reversal radar imaging method based on high-resolution hyperbolic radon transform[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1–5. doi: 10.1109/LGRS.2021.3054119.
    [8] ODEDO V C, YAVUZ M E, COSTEN F, et al. Time reversal technique based on spatiotemporal windows for through the wall imaging[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3065–3072. doi: 10.1109/TAP.2017.2696421.
    [9] LI Lianlin, ZHANG Wenji, and LI Fang. A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 423–431. doi: 10.1109/TGRS.2009.2024686.
    [10] JIA Yong, GUO Yong, CHEN Shengyi, et al. Multipath ghost and side/grating lobe suppression based on stacked generative adversarial nets in MIMO through-wall radar imaging[J]. IEEE Access, 2019, 7: 143367–143380. doi: 10.1109/ACCESS.2019.2945859.
    [11] CHEN Guohao, CUI Guolong, KONG Lingjiang, et al. Robust multiple human targets tracking for through-wall imaging radar[C]. 2018 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1–5. doi: 10.23919/ICIF.2018.8455343.
    [12] JIA Yong, KONG Lingjiang, YANG Xiaobo, et al. Target detection in multi-channel through-wall-radar imaging[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 539–542. doi: 10.1109/RADAR.2012.6212199.
    [13] 姚雪, 孔令讲, 易川, 等. 一种适用于穿墙雷达成像的墙体补偿算法[J]. 雷达科学与技术, 2014, 12(6): 654–658. doi: 10.3969/j.issn.1672-2337.2014.06.017.

    YAO Xue, KONG Lingjiang, YI Chuan, et al. A new wall compensation algorithm for through-the-wall radar imaging[J]. Radar Science and Technology, 2014, 12(6): 654–658. doi: 10.3969/j.issn.1672-2337.2014.06.017.
    [14] LI Shiyong, AMIN M G, AN Qiang, et al. 2-D coherence factor for sidelobe and ghost suppressions in radar imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1204–1209. doi: 10.1109/TAP.2019.2938581.
    [15] LU Biying, SUN Xin, ZHAO Yang, et al. Phase coherence factor for mitigation of sidelobe artifacts in through-the-wall radar imaging[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(6): 716–725. doi: 10.1080/09205071.2013.774111.
    [16] LIU Jiangang, JIA Yong, KONG Lingjiang, et al. Sign-coherence-factor-based suppression for grating lobes in through-wall radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1681–1685. doi: 10.1109/LGRS.2016.2603982.
    [17] AN Qiang, HORRFAR A, ZHANG Wenji, et al. Range coherence factor for down range sidelobes suppression in radar imaging through multilayered dielectric media[J]. IEEE Access, 2019, 7: 66910–66918. doi: 10.1109/ACCESS.2019.2911693.
    [18] SENG C H, BOUZERDOUM A, AMIN M G, et al. Two-stage fuzzy fusion with applications to through-the-wall radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 687–691. doi: 10.1109/LGRS.2012.2218570.
    [19] SENG C H, BOUZERDOUM A, AMIN M G, et al. Probabilistic fuzzy image fusion approach for radar through wall sensing[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4938–4951. doi: 10.1109/TIP.2013.2279953.
    [20] JIA Yong, ZHONG Xiaoling, LIU Jiangang, et al. Single-side two-location spotlight imaging for building based on MIMO through-wall-radar[J]. Sensors, 2016, 16(9): 1441. doi: 10.3390/s16091441.
    [21] LI Huquan, CUI Guolong, GUO Shisheng, et al. Human target detection based on FCN for through-the-wall radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1565–1569. doi: 10.1109/LGRS.2020.3006077.
    [22] QU Lele, WANG Changan, YANG Tianhong, et al. Enhanced through-the-wall radar imaging based on deep layer aggregation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4023705. doi: 10.1109/LGRS.2022.3171714.
    [23] VISHWAKARMA S and RAM S S. Mitigation of through-wall distortions of frontal radar images using denoising autoencoders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6650–6663. doi: 10.1109/TGRS.2020.2978440.
    [24] ZHANG Huiyuan, SONG Ruiyuan, CHEN Shengyi, et al. Target imaging based on generative adversarial nets in through-wall radar imaging[C]. International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–6. doi: 10.1109/ICCAIS46528.2019.9074694.
    [25] JIA Yong, SONG Ruiyuan, CHEN Shengyi, et al. Preliminary results of multipath ghost suppression based on generative adversarial nets in TWRI[C]. IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 208–212. doi: 10.1109/SIPROCESS.2019.8868597.
    [26] HUANG Shaoyin, QIAN Jiang, WANG Yong, et al. Through-the-wall radar super-resolution imaging based on cascade U-net[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2933–2936. doi: 10.1109/IGARSS.2019.8900569.
    [27] GAMIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(59): 1–35. doi: 10.48550/arXiv.1505.07818.
    [28] ZHU Junyan, PAKR T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251. doi: 10.1109/ICCV.2017.244.
    [29] JANA R and KOCUR D. Compensation of wall effect for through wall tracking of moving targets[J]. Radioengineering, 2009, 18(2): 189–195.
    [30] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238.

    FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238.
    [31] KIM J, KIM M, KANG H, et al. U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[C]. 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
    [32] ULYANOV D, VEDALDI A, and LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. https://arXiv.org/abs/1607.08022, 2016.
    [33] BA J L, KIROS J R, and HINTON G E. Layer normalization[EB/OL]. https://arXiv.org/abs/1607.06450, 2016.
    [34] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [35] SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
    [36] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
    [37] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]. 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6629–6640. doi: 10.5555/3295222.3295408.
    [38] WANG Qiang and BI Sheng. Prediction of the PSNR quality of decoded images in fractal image coding[J]. Mathematical Problems in Engineering, 2016, 2016: 2159703. doi: 10.1155/2016/2159703.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  280
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-05-29
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回