分布式无线组网超宽带穿墙雷达系统设计与联合定位

刘新 朱海滨 刘宗强 薛长虎 穆雅鑫 渠晓东 叶盛波 夏正欢 方广有

刘新, 朱海滨, 刘宗强, 等. 分布式无线组网超宽带穿墙雷达系统设计与联合定位[J]. 雷达学报(中英文), 2024, 13(4): 747–760. doi: 10.12000/JR23239
引用本文: 刘新, 朱海滨, 刘宗强, 等. 分布式无线组网超宽带穿墙雷达系统设计与联合定位[J]. 雷达学报(中英文), 2024, 13(4): 747–760. doi: 10.12000/JR23239
LIU Xin, ZHU Haibin, LIU Zongqiang, et al. The design and joint positioning method of an ultra-wideband through-wall radar system for distributed wireless networking[J]. Journal of Radars, 2024, 13(4): 747–760. doi: 10.12000/JR23239
Citation: LIU Xin, ZHU Haibin, LIU Zongqiang, et al. The design and joint positioning method of an ultra-wideband through-wall radar system for distributed wireless networking[J]. Journal of Radars, 2024, 13(4): 747–760. doi: 10.12000/JR23239

分布式无线组网超宽带穿墙雷达系统设计与联合定位

doi: 10.12000/JR23239
基金项目: 国家重点研发计划(2021YFC3002100, 2023YFB3905505),国家自然科学基金(61601438, 62201573),北京信息科技大学校基金(2021XJJ22)
详细信息
    作者简介:

    刘 新,博士,高级工程师,主要研究方向为新体制雷达系统设计与雷达信号处理

    朱海滨,硕士生,主要研究方向为极化雷达信号处理与目标分类方法

    刘宗强,博士,主要研究方向为天基遥感信息处理与人工智能反演算法

    薛长虎,博士,主要研究方向为雷达SAR图像干涉处理及在国土形变检测等领域的应用

    穆雅鑫,博士,副教授,硕士生导师,主要研究方向为近地表目标电磁检测与成像方法

    渠晓东,博士,硕士生导师,主要研究方向为超宽带穿墙雷达系统研制、行为识别与姿态重构等

    叶盛波,研究员,硕士生导师,主要研究方向为超宽带探地雷达、穿墙三维成像雷达等技术

    夏正欢,研究员,硕士生导师,主要研究方向为新体制天基雷达系统与信息处理技术

    方广有,研究员,博士生导师,主要研究方向为超宽带电磁场理论及其工程应用、超宽带雷达成像技术、微波成像新方法和新技术等

    通讯作者:

    刘宗强 bestlzq@126.com

    叶盛波 sbye@mail.ie.ac.cn

  • 责任主编:郭世盛 Corresponding Editor: GUO Shisheng
  • 中图分类号: TN953

The Design and Joint Positioning Method of an ultra-wideband Through-wall Radar System for Distributed Wireless Networking

Funds: The National Key R&D Program of China (2021YFC3002100, 2023YFB3905505), The National Natural Science Foundation of China (61601438, 62201573), Beijing Information Science and Technology University Foundation (2021XJJ22)
More Information
  • 摘要: 单发单收穿墙雷达具备便携、系统简单、可独立工作等优势,但难以实现目标二维定位与跟踪。该文基于便携式单发单收雷达设计了一套分布式无线组网穿墙雷达系统,同时提出了一种目标联合定位方法,能够兼顾系统便携、低成本和目标二维信息估计。首先,设计了基于互补格雷码发射波形的超宽带雷达系统,解决了同频段多台雷达同时工作互相干扰的问题;分布式无线组网超宽带穿墙雷达系统包括3个雷达节点,并通过无线模块与数据处理中心通信。其次,提出了一种基于行为认知理论和模板匹配相结合的数据同步方法,通过识别各雷达数据中的相同运动状态来解决无线组网雷达慢时同步问题,摆脱了传统同步方法对硬件的苛刻要求。最后,提出基于Levenberg-Marquardt (L-M)最优化算法的雷达位置自估计和目标位置求解方法,实现了无先验雷达节点位置信息下的目标快速定位与跟踪。通过仿真分析与实验验证,该文设计的无线组网雷达系统可以实现目标二维定位与实时跟踪,雷达自身位置的估计精度优于0.06 m,对运动人体目标定位精度优于0.62 m。

     

  • 图  1  分布式组网穿墙雷达示意图

    Figure  1.  Distributed network through-wall radar diagram

    图  2  伪随机编码雷达系统框图

    Figure  2.  Block diagram of pseudo random coded radar system

    图  3  格雷互补码产生流程

    Figure  3.  Gray complementary code generation process

    图  4  所选取的3组格雷码对自相关结果

    Figure  4.  The autocorrelation results of the selected three sets of Gray codes

    图  5  所选取的3组格雷码对互相关结果

    Figure  5.  The cross-correlation results of the selected three sets of Gray codes

    图  6  时钟同步模块逻辑图

    Figure  6.  The logic diagram of clock synchronization module

    图  7  发射机信号产生逻辑图

    Figure  7.  The logic diagram of transmitter signal generation

    图  8  发射机所产生的伪随机编码信号

    Figure  8.  A pseudo-random coded signal produced by the transmitter

    图  9  A码/B码自相关函数的和

    Figure  9.  The sum of autocorrelation functions for A code/B code

    图  10  接收机逻辑图

    Figure  10.  Receiver logic diagram

    图  11  混合采样时序图

    Figure  11.  Mixed sampling sequence diagram

    图  12  分布式组网雷达目标联合定位算法流程图

    Figure  12.  Flowchart of distributed network radar target joint localization algorithm

    图  13  基于直达波的快时校准方法

    Figure  13.  Fast time calibration method based on direct wave

    图  14  运动目标仿真场景

    Figure  14.  Motion target simulation scene

    图  15  雷达位置估计误差随SNR的变化

    Figure  15.  The variation of radar position estimation error with SNRs

    图  16  目标位置估计误差随SNR的变化

    Figure  16.  The variation of target position estimation error with SNRs

    图  17  分布式无线组网雷达系统

    Figure  17.  Distributed wireless networked radar system

    图  18  人体运动轨迹

    Figure  18.  Human motion trajectory

    图  19  3台雷达回波B-Scan图像

    Figure  19.  The B-Scan images from three radar echoes

    图  20  雷达#2中选取的匹配模板B-Scan图

    Figure  20.  The matching template B-Scan map selected from the radar #2

    图  21  模板与雷达#1的互相关结果

    Figure  21.  The results of cross-correlation between template and radar #1

    图  22  模板与雷达#3的互相关结果

    Figure  22.  The results of cross-correlation between template and radar #3

    图  23  数据段1雷达位置估计结果

    Figure  23.  The estimation results of radar position by data segment 1

    图  24  数据段2雷达位置估计结果

    Figure  24.  The estimation results of radar position by data segment 2

    图  25  分布式雷达联合定位结果

    Figure  25.  Distributed radar joint location results

    图  26  定位误差统计结果箱型图

    Figure  26.  Box plot of positioning error statistics results

    表  1  伪随机编码穿墙雷达系统关键参数

    Table  1.   Key parameters of pseudo random coded through-wall radar system

    参数 指标
    中心频率 1 GHz
    带宽 1 GHz
    码型 Golay互补码
    累加次数 16
    ADC位数 16 bit
    等效采样率 16 GHz
    扫描率 8 道/s
    发射功率 17 dBm
    重量 0.6 kg
    下载: 导出CSV

    表  2  无测距误差下雷达位置最优化估计结果(m)

    Table  2.   The optimization estimation results of radar position without range error (m)

    雷达放置位置 场景1 场景2 场景3 场景4
    (–2.0,0)
    (+2.0,0)
    (–2.0,0)
    (+2.0,0)
    (–2.0,0)
    (+2.0,0)
    (–2.0,0)
    (+2.0,0)
    (–2.0,0)
    (+2.0,0)
    (–2.0,0)
    (+1.0,0)
    (–2.0,0)
    (+1.0,0)
    (–2.0,0)
    (+1.0,0)
    (–1.95,0)
    (+1.05,0)
    (–2.0,0)
    (+1.0,0)
    (–1.0,0)
    (+2.0,0)
    (–1.0,0)
    (+2.0,0)
    (–1.0,0)
    (+2.0,0)
    (–1.05,0)
    (+1.95,0)
    (–1.0,0)
    (+2.0,0)
    (–0.5,0)
    (+1.0,0)
    (–0.5,0)
    (+1.0,0)
    (–0.5,0)
    (+1.0,0)
    (–0.52,0)
    (+0.97,0)
    (–0.5,0)
    (+1.0,0)
    (–1.0,0)
    (+3.0,0)
    (–1.0,0)
    (+3.0,0)
    (–1.0,0)
    (+3.0,0)
    (–1.08,0)
    (+2.91,0)
    (–1.0,0)
    (+3.0,0)
    注:红色为雷达位置估计误差最大的情形。
    下载: 导出CSV

    表  3  含测距误差下雷达位置最优化估计结果(m)

    Table  3.   The optimization estimation results of radar position with range error (m)

    雷达放置位置 场景1 场景2 场景3 场景4
    (–2.0,0)
    (+2.0,0)
    (–2.03,0)
    (+2.00,0)
    (–1.99,0)
    (+2.02,0)
    (–2.19,0)
    (+1.83,0)
    (–2.02,0)
    (+1.99,0)
    (–2.0,0)
    (+1.0,0)
    (–2.07,0)
    (+0.97,0)
    (–1.98,0)
    (+0.99,0)
    (–2.31,0)
    (+0.79,0)
    (–2.05,0)
    (+0.97,0)
    (–1.0,0)
    (+2.0,0)
    (–0.99,0)
    (+2.02,0)
    (–0.98,0)
    (+2.00,0)
    (–1.03,0)
    (+1.99,0)
    (–1.02,0)
    (+2.01,0)
    (–0.5,0)
    (+1.0,0)
    (–0.57,0)
    (+1.00,0)
    (–0.48,0)
    (+1.03,0)
    (–0.34,0)
    (+1.29,0)
    (–0.50,0)
    (+0.95,0)
    (–1.0,0)
    (+3.0,0)
    (–1.01,0)
    (+2.99,0)
    (–0.97,0)
    (+3.02,0)
    (–1.21,0)
    (+2.82,0)
    (–0.99,0)
    (+3.00,0)
    注:红色为雷达位置估计误差最大的情形。
    下载: 导出CSV

    表  4  雷达位置最优化估计结果 (m)

    Table  4.   The estimation results of radar position optimization (m)

    雷达放置位置 数据段1 数据段2
    雷达#1(–0.8,0)
    雷达#3(+0.8,0)
    (–0.8328,0 )
    (+0.7382,0)
    (–0.5721,0)
    (+1.1519,0)
    下载: 导出CSV
  • [1] AMIN M G, 朱国富, 陆必应, 金添, 等译. 穿墙雷达成像[M]. 北京: 电子工业出版社, 2014: 100−110.

    AMIN M G, ZHU Guofu, LU Biying, JIN Tian, et al. translation. Through-The-Wall Radar Imaging[M]. Beijing: Publishing House of Electronics Industry, 2014: 100−110.
    [2] 夏正欢, 张群英, 叶盛波, 等. 一种便携式伪随机编码超宽带人体感知雷达设计[J]. 雷达学报, 2015, 4(5): 527–537. doi: 10.12000/JR15027.

    XIA Zhenghuan, ZHANG Qunying, YE Shengbo, et al. Design of a handheld pseudo random coded uwb radar for human sensing[J]. Journal of Radars, 2015, 4(5): 527–537. doi: 10.12000/JR15027.
    [3] WANG J, DU H, NIYATO DT, et al. Through the wall detection and localization of autonomous mobile device in indoor scenario.[J] IEEE Journal on Selected Areas in Communications, 2024, 42: 161−176. doi: 10.1109/JSAC.2023.3322819.
    [4] 金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275–284. doi: 10.12000/JR18031.

    JIN Tian and SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars, 2018, 7(3): 275–284. doi: 10.12000/JR18031.
    [5] ZHENG Zhijie, PAN Jun, NI Zhikang, et al. Recovering human pose and shape from through-the-wall radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5112015. doi: 10.1109/TGRS.2022.3162333.
    [6] LIU Xin, YAN Kun, YANG Guangyao, et al. Improved vital signal extraction algorithm for through the wall radar[J]. Electronics Letters, 2020, 56(2): 89–91. doi: 10.1049/el.2019.2853.
    [7] QU Xiaodong, GAO Weicheng, MENG Haoyu, et al. Indoor human behavior recognition method based on wavelet scattering network and conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104815. doi: 10.1109/TGRS.2023.3276023.
    [8] 张杨, 吕昊, 于霄, 等. 基于超宽谱雷达多目标穿墙探测定位技术的研究[J]. 医疗卫生装备, 2016, 37(8): 10–13. doi: 10.7687/J.ISSN1003-8868.2016.08.010.

    ZHANG Yang, LYU Hao, YU Xiao, et al. Research of through-wall detection and location technique for multihuman targets using ultra wideband radar[J]. Chinese Medical Equipment Journal, 2016, 37(8): 10–13. doi: 10.7687/J.ISSN1003-8868.2016.08.010.
    [9] MOHAMMED I, COLLINGS I B, and HANLY S V. Multiple target localization through-the-wall using non-coherent Bi-static radar[C]. 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, 2019: 1–8. doi: 10.1109/ICSPCS47537.2019.9008415.
    [10] LIU Xin, ZHANG Jingwei, GUO Ruijie, et al. A novel interferometry positioning and tracking method with short baseline for UWB through-the-wall radar system[C]. 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 2018: 1–4. doi: 10.1109/ICGPR.2018.8441520.
    [11] PAN Jun, YE Shengbo, SHI Cheng, et al. 3D imaging of moving targets for ultra-wideband MIMO through-wall radar system[J]. IET Radar, Sonar & Navigation, 2021, 15(3): 261–273. doi: 10.1049/RSN2.12035.
    [12] 刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.
    [13] 郭冠斌, 方青. 雷达组网技术的现状与发展[J]. 雷达科学与技术, 2005, 3(4): 193–197, 202. doi: 10.3969/j.issn.1672-2337.2005.04.001.

    GUO Guanbin and FANG Qing. Current status and development of radar netting technique[J]. Radar Science and Technology, 2005, 3(4): 193–197, 202. doi: 10.3969/j.issn.1672-2337.2005.04.001.
    [14] 史城, 叶盛波, 潘俊, 等. 一种基于分布式穿墙雷达的复杂条件下人体目标检测方法[J]. 电子与信息学报, 2022, 44(4): 1193–1202. doi: 10.11999/JEIT211203.

    SHI Cheng, YE Shengbo, PAN Jun, et al. A human target detection method under complex conditions by distributed through-wall radar system[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1193–1202. doi: 10.11999/JEIT211203.
    [15] 曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2012.20104.

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2012.20104.
    [16] KOCUR D A, ŠVECOVÁ M, and ROVNÁKOVÁ J. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems[J]. Sensors, 2013, 13(9): 11969–11997. doi: 10.3390/s130911969.
    [17] ZHANG Jun, JIN Tian, HE Yuan, et al. A centralized processing framework for foliage-penetration human tracking in multistatic radar[J]. Radioengineering, 2016, 25(1): 98–105. doi: 10.13164/RE.2016.0098.
    [18] HE Yuan, AUBRY P, and LE CHEVALIER F. Ultra-wideband multistatic tracking of human targets[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 1–5. doi: 10.1049/CP.2013.0406.
    [19] PRAGER S, HAYNES M S, and MOGHADDAM M. Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4787–4804. doi: 10.1109/TMTT.2020.3014876.
    [20] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328.
    [21] NIU Ruixin, BLUM R S, VARSHNEY P K, et al. Target localization and tracking in noncoherent multiple-input multiple-output radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1466–1489. doi: 10.1109/TAES.2012.6178073.
    [22] ROVNÁKOVÁ J and KOCUR D. TOA estimation and data association for through-wall tracking of moving targets[J]. EURASIP Journal on Wireless Communications and Networking, 2010, 2010: 420767. doi: 10.1155/2010/420767.
    [23] 李虎泉, 郭世盛, 陈家辉, 等. 分布式穿墙成像雷达空间配准方法[J]. 电子科技大学学报, 2023, 52(1): 30–37. doi: 10.12178/1001-0548.2022162.

    LI Huquan, GUO Shisheng, CHEN Jiahui, et al. Radar registration algorithm for distributed through-the-wall imaging radar[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(1): 30–37. doi: 10.12178/1001-0548.2022162.
    [24] REN Wei, QI Fugui, FOROUGHIAN F, et al. Vital sign detection in any orientation using a distributed radar network via modified independent component analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4774–4790. doi: 10.1109/TMTT.2021.3101655.
    [25] YANG Shixing, YI Wei, and JAKOBSSON A. Multitarget detection strategy for distributed MIMO radar with widely separated antennas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5113516. doi: 10.1109/TGRS.2022.3175046.
    [26] XIA Zhenghuan, WU Shiyou, LIU Xin, et al. Through-floor vital sign searching for trapped person using wireless-netted UWB radars[J]. Applied Sciences, 2021, 11(22): 10538. doi: 10.3390/app112210538.
    [27] SAKAMOTO T and SATO T. A method of estimating a room shape using a single antenna in a multipath environment[C]. Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 2010: 1–5.
    [28] GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
    [29] 何东健. 数字图像处理[M]. 3版. 西安: 西安电子科技大学出版社, 2015: 207–209.

    HE Dongjian. Digital Image Processing[M]. 3rd ed. Xi’an: XIDIAN UNIVERSIY PRESS, 2015: 207–209.
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  884
  • HTML全文浏览量:  317
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-02-03
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回