基于三维墙体补偿的快速重聚焦算法

袁玉冰 叶盛波 纪奕才 林波 梁啸 李心慧 刘小军 方广有 罗朝鹏 吕荣其

袁玉冰, 叶盛波, 纪奕才, 等. 基于三维墙体补偿的快速重聚焦算法[J]. 雷达学报(中英文), 2024, 13(4): 822–837. doi: 10.12000/JR24051
引用本文: 袁玉冰, 叶盛波, 纪奕才, 等. 基于三维墙体补偿的快速重聚焦算法[J]. 雷达学报(中英文), 2024, 13(4): 822–837. doi: 10.12000/JR24051
YUAN Yubing, YE Shengbo, JI Yicai, et al. Fast refocusing algorithm based on three-dimensional wall compensation[J]. Journal of Radars, 2024, 13(4): 822–837. doi: 10.12000/JR24051
Citation: YUAN Yubing, YE Shengbo, JI Yicai, et al. Fast refocusing algorithm based on three-dimensional wall compensation[J]. Journal of Radars, 2024, 13(4): 822–837. doi: 10.12000/JR24051

基于三维墙体补偿的快速重聚焦算法

doi: 10.12000/JR24051
基金项目: 国家重点研发计划(2021YFC3002100);近地面探测技术重点实验室基金(6142414220710)
详细信息
    作者简介:

    袁玉冰,博士生,主要研究方向为超宽带雷达信号处理、穿墙三维成像技术等

    叶盛波,研究员,硕士生导师,主要研究方向为超宽带探地雷达、穿墙三维成像雷达等技术

    纪奕才,研究员,博士生导师,主要研究方向为超宽带雷达、超宽带天线、电磁场数值计算、电磁兼容

    林 波,博士生,主要研究方向为毫米波成像与目标识别技术

    梁 啸,博士生,主要研究方向为超宽带穿墙雷达、生命信号增强技术等

    李心慧,硕士生,主要研究方向为超宽带穿透雷达技术

    刘小军,研究员,博士生导师,主要研究方向为超宽带雷达技术、信号与信息处理

    方广有,研究员,博士生导师,主要研究方向为超宽带雷达成像理论与技术、探地雷达技术、地球物理电磁勘探技术、月球/火星探测雷达技术、超宽带天线理论与技术、THz成像技术等

    罗朝鹏,硕士,高级工程师,主要研究方向为未爆弹探测方法与应用

    吕荣其,硕士,助理工程师,主要研究方向为地下小目标体探测方法与应用

    通讯作者:

    叶盛波 yesb@aircas.ac.cn

    罗朝鹏 chaopengluo59103@163.com

  • 责任主编:金添 Corresponding Editor: JIN Tian
  • 中图分类号: TN953

Fast Refocusing Algorithm Based on Three-dimensional Wall Compensation

Funds: The National Key R&D Program of China (2021YFC3002100); Science and Technology on Near-Surface Detection Laboratory (6142414220710)
More Information
  • 摘要: 超宽带穿墙雷达具备穿透墙体的能力,结合多输入多输出(MIMO)技术可以实现墙体后侧隐蔽目标的成像,为建筑物内人员检测和定位提供了丰富的信息。该文基于调频连续波(FMCW)体制下的多发多收超宽带穿墙雷达系统,提出了一种闭环干涉校准方法,校正了由系统内部误差产生的图像散焦。墙体的存在会导致目标成像位置偏离真实位置,该文推导了联合通道和像素点的三维墙体补偿算法,并基于其几何特性,提出快速重聚焦算法。首先去除墙体影响、确定目标存在区域;鉴于区域几何特性,选择适应区域形状的球坐标网格划分;分区域进行局部重聚焦,避免了因电磁波衰减导致成像结果中出现强目标掩盖弱目标的现象,并且球坐标形式的网格划分和局部成像大大缩减了算法耗时。通过仿真分析与实验验证,该文提出的系统校准方法能有效补偿系统误差,快速重聚焦算法可以实现墙后人体多目标三维定位,各维度定位精度优于10 cm,计算效率相对其余算法提升了5倍左右。从目标检测概率方面,所提算法相比其余算法不会出现弱目标的漏检。

     

  • 图  1  MIMO雷达系统结构图

    Figure  1.  The block diagram of MIMO radar system

    图  2  天线阵列结构图

    Figure  2.  The physical structure of the antenna array

    图  3  角反射器成像场景

    Figure  3.  The corner reflector imaging scenario

    图  4  校准前后角反射器三维成像结果

    Figure  4.  3D imaging results of the corner reflector before and after calibration

    图  5  所提重聚焦算法流程图

    Figure  5.  Flowchart of the proposed refocusing algorithm

    图  6  二维穿墙传播路径

    Figure  6.  2D propagation path through the wall

    图  7  三维穿墙模型

    Figure  7.  3D wall penetrating model

    图  8  三维电磁波传播路径

    Figure  8.  3D propagation path through the wall

    图  9  $\delta R$随$\theta $的变化

    Figure  9.  The variation of $\delta R$ with $\theta $

    图  10  三维空间局部成像

    Figure  10.  Local imaging in 3D space

    图  11  分区域聚焦网格划分

    Figure  11.  Grid partitioning with regional focus

    图  12  传统算法的成像结果

    Figure  12.  The imaging results of traditional algorithm

    图  13  所提算法的仿真成像结果

    Figure  13.  The simulation imaging results of the proposed algorithm

    图  14  目标定位误差

    Figure  14.  Target positioning error curve

    图  15  两个人体目标的实验场景图

    Figure  15.  The experimental scenario of two human targets

    图  16  中心通道回波距离-慢时间分布

    Figure  16.  Center channel echo range-slow time distribution

    图  17  所提算法两个人体目标成像结果

    Figure  17.  The imaging results of two human targets using the proposed algorithm

    图  18  两个人体目标各方法三维成像结果

    Figure  18.  The 3D imaging results of two human targets using various algorithms

    图  19  3个人体目标的实验场景图

    Figure  19.  The experimental scenario of three human targets

    图  20  3个人体目标中心通道回波距离-慢时间分布

    Figure  20.  Center channel echo range-slow time distribution of three human targets

    图  21  所提算法3个人体目标成像结果

    Figure  21.  The imaging results of three human targets using the proposed algorithm

    图  22  3个人体目标各方法三维成像结果

    Figure  22.  The 3D imaging results of three human targets using various algorithms

    图  23  狭小空间实验场景

    Figure  23.  Narrow space experimental scene

    图  24  狭小空间两目标成像结果

    Figure  24.  Imaging results of various methods in a narrow spaces

    表  1  仿真参数表

    Table  1.   Simulation parameter table

    参数 指标
    墙体厚度${D_{\mathrm{w}}}$ 37 cm
    相对介电常数${\varepsilon _{\mathrm{r}}}$ 6
    天线阵列 4发7收
    信号波形 Ricker子波
    目标位置 (1.5, 1.0, 1.0)
    下载: 导出CSV

    表  2  各方法定位精度对比(m)

    Table  2.   Comparison of positioning accuracy among various methods (m)

    所用算法 x y z $|\Delta x|$ ($|\Delta x|/x$) $|\Delta y|$ ($\Delta y|/y$) $|\Delta z|$ ($|\Delta z|/z$) $\delta p$
    理想 1.5 1.0 1.0
    传统算法 2.145 1.44 0.9877 0.645 (43%) 0.44 (44%) 0.0123 (1.23%) 0.645
    文献[16] 1.935 1.3 0.896 0.435 (22.48%) 0.3 (30%) 0.104 (10.4%) 0.435
    文献[19] 1.4375 0.966 1.1634 0.0625 (4.17%) 0.034 (3.4%) 0.1634 (16.34%) 0.1634
    所提算法 1.5408 1.0121 0.996 0.0408 (2.72%) 0.0121 (1.21%) 0.004 (0.4%) 0.0408
    下载: 导出CSV

    表  3  实验一各方法对目标1定位精度对比(m)

    Table  3.   Comparison of positioning accuracy of target 1 using various methods in the first experiment (m)

    所用算法 x y z $|\Delta x|$ $|\Delta y|$ $|\Delta z|$
    理想 1.3 1.0 2.4
    传统算法 1.633 1.29 2.6333 0.333 0.29 0.2333
    文献[16] 1.5667 1.17 2.4981 0.2667 0.17 0.0981
    文献[19] 1.3667 1.08 2.3743 0.0667 0.08 0.0257
    所提算法 1.3805 1.0478 2.3854 0.0805 0.0478 0.0146
    下载: 导出CSV

    表  4  目标位置(m)

    Table  4.   Target position (m)

    序号 坐标
    目标1 (0, 0.6, 2.7)
    目标2 (1.6, 0.1, 4.5)
    目标3 (–4.4, 0.1, 5.3)
    下载: 导出CSV

    表  5  实验二各方法对目标1定位精度对比(m)

    Table  5.   Comparison of positioning accuracy of target 1 using various methods in the second experiment (m)

    所用算法 x y z $|\Delta x|$ $|\Delta y|$ $|\Delta z|$
    理想 0 0.6 2.7
    传统算法 0.08 0.75 3.0405 0.08 0.15 0.3405
    文献[16] 0.04 0.69 2.8574 0.04 0.09 0.1574
    文献[19] 0.0667 0.63 2.6743 0.0667 0.03 0.0257
    所提算法 0.0502 0.5979 2.6843 0.0502 0.0021 0.0157
    下载: 导出CSV

    表  6  实验二各方法对目标2定位精度对比(m)

    Table  6.   Comparison of positioning accuracy of target 2 using various methods in the second experiment (m)

    所用算法 x y z $|\Delta x|$ $|\Delta y|$ $|\Delta z|$
    理想 1.6 0.1 4.5
    传统算法 1.88 0.18 4.7801 0.28 0.08 0.2801
    文献[16] 1.80 0.15 4.6123 0.20 0.05 0.1123
    文献[19] 1.6667 0.15 4.4597 0.0667 0.05 0.0403
    所提算法 1.6402 0.1724 4.4740 0.0402 0.0724 0.0240
    下载: 导出CSV

    表  7  实验三各方法对目标1定位精度对比(m)

    Table  7.   Comparison of positioning accuracy of target 1 using various methods in the third experiment (m)

    所用算法 x y z $|\Delta x|$ $|\Delta y|$ $|\Delta z|$
    理想 1.6 0.23 1.9
    传统算法 1.84 0.33 2.0233 0.24 0.1 0.1233
    文献[16] 1.76 0.33 1.9607 0.16 0.1 0.0607
    文献[19] 1.6 0.33 1.9293 0 0.1 0.0293
    所提算法 1.6421 0.3132 1.8961 0.0421 0.0832 0.0039
    下载: 导出CSV
  • [1] MAITI S and BHATTACHARYA A. Microwave detection of respiration rate of a living human hidden behind an inhomogeneous optically opaque medium[J]. IEEE Sensors Journal, 2021, 21(5): 6133–6144. doi: 10.1109/JSEN.2020.3043846.
    [2] YE Shengbo, ZHOU Bin, and FANG Guangyou. Design of a novel ultrawideband digital receiver for pulse ground-penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 656–660. doi: 10.1109/LGRS.2010.2098844.
    [3] FANG Guangyou. The research activities of Ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Singapore, Singapore, 2007: 43–45. doi: 10.1109/ICUWB.2007.4380912.
    [4] QU Xiaodong, GAO Weicheng, MENG Haoyu, et al. Indoor human behavior recognition method based on wavelet scattering network and conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104815. doi: 10.1109/TGRS.2023.3276023.
    [5] 金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [6] QIU Lei, JIN Tian, LU Biying, et al. An isophase-based life signal extraction in through-the-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 193–197. doi: 10.1109/LGRS.2016.2633622.
    [7] 金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275–284. doi: 10.12000/JR18031.

    JIN Tian and SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars, 2018, 7(3): 275–284. doi: 10.12000/JR18031.
    [8] YUAN Yubing, JI Yicai, YE Shengbo, et al. A clutter identification and removal method based on long delay lines and cross-correlation in through-wall detection[J]. Applied Sciences, 2024, 14(3): 1299. doi: 10.3390/app14031299.
    [9] MOHAMMED I, COLLINGS I B, and HANLY S V. Multiple target localization through-the-wall using non-coherent Bi-static radar[C]. 2019 13th International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 2019: 1–8. doi: 10.1109/ICSPCS47537.2019.9008415.
    [10] 刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.
    [11] LIN Bo, LI Chao, JI Yicai, et al. Efficient scaling techniques for 2-D sparse MIMO array far-field imaging[J]. IEEE Sensors Journal, 2024, 24(8): 12604–12615. doi: 10.1109/JSEN.2024.3354246.
    [12] AFTANAS M, ROVNAKOVA J, DRUTAROVSKY M, et al. Efficient method of TOA estimation for through wall imaging by UWB radar[C]. 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, 2008: 101–104. doi: 10.1109/ICUWB.2008.4653361.
    [13] AHMAD F, AMIN M G, and KASSAM S A. Synthetic aperture beamformer for imaging through a dielectric wall[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 271–283. doi: 10.1109/TAES.2005.1413761.
    [14] WANG Hanning, LU Biying, ZHOU Zhimin, et al. Through-the-wall imaging and correction based on the estimation of wall parameters[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1327–1330. doi: 10.1109/CIE-Radar.2011.6159802.
    [15] CUI Guolong, KONG Lingjiang, and YANG Jianyu. A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging[C]. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 123–126. doi: 10.1109/APSAR.2007.4418570.
    [16] ROVNAKOVA J and KOCUR D. Compensation of wall effect for through wall tracking of moving targets[J]. Radioengineering, 2009, 18(2): 189–195.
    [17] JIN Tian, CHEN Bo, and ZHOU Zhimin. Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1836–1843. doi: 10.1109/TGRS.2012.2206395.
    [18] LIU Jiangang, KONG Lingjiang, YANG Xiaobo, et al. Refraction angle approximation algorithm for wall compensation in TWRI[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 943–946. doi: 10.1109/LGRS.2016.2555291.
    [19] ZHAO Yang, LU Biying, and SUN Xin. Three-dimensional imaging for UWB though-the-wall radar[C]. 2013 IEEE Third International Conference on Information Science and Technology, Yangzhou, China, 2013: 1503–1506. doi: 10.1109/ICIST.2013.6747822.
    [20] AFTANAS I M. Through wall imaging with UWB radar system[D]. [Ph.D. dissertation], Technical University of Kosice, 2010.
    [21] GU Xiang and ZHANG Yunhua. Autofocus imaging simulation for through-wall radar by using FDTD with unknown wall characteristics[C]. 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 2010: 1657–1660.
  • 加载中
图(24) / 表(7)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  103
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-06-13
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回