单光子计数太赫兹雷达直接探测方法与性能研究

刘康 武烘萱 易俊 王宏强 罗成高

刘康, 武烘萱, 易俊, 等. 单光子计数太赫兹雷达直接探测方法与性能研究[J]. 雷达学报(中英文), 2024, 13(4): 904–916. doi: 10.12000/JR24012
引用本文: 刘康, 武烘萱, 易俊, 等. 单光子计数太赫兹雷达直接探测方法与性能研究[J]. 雷达学报(中英文), 2024, 13(4): 904–916. doi: 10.12000/JR24012
LIU Kang, WU Hongxuan, YI Jun, et al. Research on direct detection method and performance of single-photon counting terahertz radar[J]. Journal of Radars, 2024, 13(4): 904–916. doi: 10.12000/JR24012
Citation: LIU Kang, WU Hongxuan, YI Jun, et al. Research on direct detection method and performance of single-photon counting terahertz radar[J]. Journal of Radars, 2024, 13(4): 904–916. doi: 10.12000/JR24012

单光子计数太赫兹雷达直接探测方法与性能研究

DOI: 10.12000/JR24012
基金项目: 国家自然科学基金(62035014, 62105356, 61921001)
详细信息
    作者简介:

    刘 康,博士,教授,主要研究方向为电磁涡旋雷达成像技术、新体制雷达成像技术等

    武烘萱,硕士,助理工程师,主要研究方向为雷达信号处理

    易 俊,博士,助理研究员,主要研究方向为太赫兹雷达高灵敏探测技术、太赫兹雷达成像信号处理等

    王宏强,博士,研究员,主要研究方向为太赫兹雷达目标特性、太赫兹雷达成像技术等

    罗成高,博士,副教授,主要研究方向为太赫兹探测通信一体化技术、太赫兹孔径编码雷达技术等

    通讯作者:

    易俊 Junyi_nudt@163.com

  • 责任主编:朱丹 Corresponding Editor: ZHU Dan
  • 中图分类号: TN95

Research on Direct Detection Method and Performance of Single-photon Counting Terahertz Radar

Funds: The National Natural Science Foundation of China (62035014, 62105356, 61921001)
More Information
  • 摘要: 针对远距离非合作目标探测,现有太赫兹雷达由于受到发射机功率低、大气衰减效应等因素影响,其作用距离有限,难以满足对目标的预警探测应用需求。为提升太赫兹雷达探测能力,该文研究了基于单光子探测技术的目标超灵敏探测方法,利用单光子探测器替代传统雷达接收机,有望显著提升太赫兹雷达的作用距离。首先,该文分析了太赫兹单光子雷达信号光子数的统计规律,从微观角度阐述了目标的回波特性,进一步,结合超导量子电容探测器的特点,建立了太赫兹单光子目标探测模型;此外,推导得到太赫兹单光子雷达目标检测性能数学表达式,并通过仿真实验对目标检测性能进行了验证和分析,获得了雷达检测性能曲线;最后开展了时间分辨太赫兹光子计数原理验证实验,通过回波脉冲计数的方式实现了目标高精度测距。该文工作将为太赫兹频段超灵敏探测技术及单光子雷达系统的研究与发展提供支撑。

     

  • 图  1  太赫兹单光子雷达直接探测方式工作流程

    Figure  1.  Workflow of the direct detection method of terahertz single-photon radar

    图  2  超导量子电容探测器工作原理

    Figure  2.  Operation principle of QCD

    图  3  单光子雷达系统工作时序

    Figure  3.  Working sequence of single-photon radar

    图  4  光子计数积累过程示意图

    Figure  4.  Schematic diagram of photon counting accumulation process

    图  5  一个子区间$ \Delta t $包含q个时隙

    Figure  5.  A sub-interval $ \Delta t $ contains q intervals

    图  6  脉冲飞行时间直方图

    Figure  6.  The time-of-flight histogram

    图  7  探测模型的3种情况

    Figure  7.  The detection model divided into the three cases

    图  8  死时间与回波位置影响下的各个时间区间内探测概率$ {p_{\text{d}}} $的分布

    Figure  8.  The distribution of $ {p_{\text{d}}} $ in each interval under different $ {t_{\text{d}}} $ and $ {t_{\text{r}}} $

    图  9  脉冲回波前沿在所对应子区间的位置示意图

    Figure  9.  Schematic diagram of the position of the pulse echo front in its corresponding sub-interval

    图  10  检测概率$ {P_{\text{D}}} $随比值$ {t_{\text{f}}}/\Delta t $的变化关系

    Figure  10.  The detection probability $ {P_{\text{D}}} $ as a function of ratio $ {t_{\text{f}}}/\Delta t $

    图  11  目标检测概率随所划分区间取值$ \Delta t $的变化趋势

    Figure  11.  Detection probability as a function of $ \Delta t $ with different simulations

    图  12  检测概率随脉冲飞行时间的变化曲线(td=3 μs)

    Figure  12.  Detection probability as a function of $ {t_{\text{r}}} $ (td=3 μs)

    图  13  单脉冲探测时检测概率和虚警概率随信号平均光子数的变化曲线((a)、(b)和(c)中曲线分别以噪声光子率$ {\lambda _{\text{n}}} $:$ 0.01{\text{ MHz}} $(点划线),$ 0.05{\text{ MHz}} $(划线),$ 0.1{\text{ MHz}} $(实线)区分;(d)、(e)和(f)中曲线分别以信噪比$ {R_{{\text{SN}}}} $:1(点划线),2(划线),10(实线)区分)

    Figure  13.  The detection probability and false alarm probability versus the mean signal photons$ {N_{\text{s}}} $ (the curves Fig. (a), Fig. (b) and Fig. (c) are differentiated by the noise photon rate function $ {\lambda _{\text{n}}} $ marked with $ 0.01{\text{ MHz}} $ (dotted line), $ 0.05{\text{ MHz}} $ (dotted line), $ 0.1{\text{ MHz}} $ (solid line); The curves from Fig. (d), Fig. (e) and Fig. (f) are differentiated by the signal to noise ratio $ {R_{{\text{SN}}}} $ marked with 1 (dotted line), 2 (dotted line), 10 (solid line))

    图  14  单脉冲探测时检测概率(PD)和虚警概率(PFA)随信号平均光子数的变化曲线

    Figure  14.  The detection probability (PD) and false alarm probability (PFA) versus the mean signal photons $ {N_{\text{s}}} $

    图  15  给定$ {P_{{\text{FA}}}} $情况下最小可检测信噪比$ {({R_{{\text{SN}}}})_{\min }} $随脉冲积累数M的变化曲线

    Figure  15.  The $ {({R_{{\text{SN}}}})_{\min }} $ as a function of the pulse accumulation number M under different $ {P_{{\text{FA}}}} $

    图  16  最小可检测信噪比$ {({R_{{\text{SN}}}})_{\min }} $随检测概率$ {P_{\text{D}}} $的变化关系

    Figure  16.  $ {({R_{{\text{SN}}}})_{\min }} $ as a function of $ {P_{\text{D}}} $

    图  17  基于光子计数的直接探测实验系统框图

    Figure  17.  Schematic of the direct detection experimental system based on photon counting

    图  18  不同积累时间下单光子计数器输出的时间分辨统计直方图

    Figure  18.  Time resolution histogram for the output of the single-photon counter in different accumulated time

  • [1] 王宏强, 罗成高, 邓彬, 等. 太赫兹雷达前沿探测成像技术[J]. 遥测遥控, 2021, 42(4): 1–17. doi: 10.12347/j.ycyk.20210419001.

    WANG Hongqiang, LUO Chenggao, DENG Bin, et al. Advanced detecting and imaging technology for terahertz radar[J]. Journal of Telemetry, Tracking and Command, 2021, 42(4): 1–17. doi: 10.12347/j.ycyk.20210419001.
    [2] ASTAFIEV O, KOMIYAMA S, KUTSUWA T, et al. Single-photon detector in the microwave range[J]. Applied Physics Letters, 2002, 80(22): 4250–4252. doi: 10.1063/1.1482787.
    [3] KOMIYAMA S, ASTAFIEV O, ANTONOV V, et al. A single-photon detector in the far-infrared range[J]. Nature, 2000, 403(6768): 405–407. doi: 10.1038/35000166.
    [4] ASTAFIEV O, KOMIYAMA S, and KUTSUWA T. Double quantum dots as a high sensitive submillimeter-wave detector[J]. Applied Physics Letters, 2001, 79(8): 1199–1201. doi: 10.1063/1.1396628.
    [5] HASHIBA H, ANTONOV V, KULIK L, et al. Sensing individual terahertz photons[J]. Nanotechnology, 2010, 21(16): 165203. doi: 10.1088/0957-4484/21/16/165203.
    [6] AN Zhenghua, CHEN J C, UEDA T, et al. Infrared phototransistor using capacitively coupled two-dimensional electron gas layers[J]. Applied Physics Letters, 2005, 86(17): 172106. doi: 10.1063/1.1920425.
    [7] WANG Zhihai, NAKAJIMA T, MATSUDA S, et al. A new scheme for sensitive detection of terahertz photons[J]. Nanotechnology, 2013, 24(2): 025205. doi: 10.1088/0957-4484/24/2/025205.
    [8] KAJIHARA Y, NAKAJIMA T, WANG Zhihai, et al. Terahertz single-photon detectors based on quantum wells[J]. Journal of Applied Physics, 2013, 113(13): 136506. doi: 10.1063/1.4795517.
    [9] KIM S, KOMIYAMA S, UEDA T, et al. Two-color detection with charge sensitive infrared phototransistors[J]. Applied Physics Letters, 2015, 107(18): 182106. doi: 10.1063/1.4935256.
    [10] ECHTERNACH P M, PEPPER B J, RECK T, et al. Single photon detection of 1.5 THz radiation with the quantum capacitance detector[J]. Nature Astronomy, 2018, 2(1): 90–97. doi: 10.1038/s41550-017-0294-y.
    [11] SHAW M D, BUENO J, DAY P, et al. Quantum capacitance detector: A pair-breaking radiation detector based on the single cooper-pair box[J]. Physical Review B, 2009, 79(14): 144511. doi: 10.1103/PhysRevB.79.144511.
    [12] STONE K J, MEGERIAN K G, DAY P K, et al. Real time quasiparticle tunneling measurements on an illuminated quantum capacitance detector[J]. Applied Physics Letters, 2012, 100(26): 263509. doi: 10.1063/1.4731880.
    [13] ECHTERNACH P M, STONE K J, BRADFORD C M, et al. Photon shot noise limited detection of terahertz radiation using a quantum capacitance detector[J]. Applied Physics Letters, 2013, 103(5): 053510. doi: 10.1063/1.4817585.
    [14] ECHTERNACH P M, BEYER A D, and BRADFORD C M. Large array of low-frequency readout quantum capacitance detectors[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011003. doi: 10.1117/1.JATIS.7.1.011003.
    [15] OH M S, KONG H J, KIM T H, et al. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system[J]. Journal of the Optical Society of America A, 2011, 28(5): 759–765. doi: 10.1364/JOSAA.28.000759.
    [16] LI Zhengping, HUANG Xin, JIANG Pengyu, et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Optics Express, 2020, 28(3): 4076–4087. doi: 10.1364/OE.383456.
    [17] DU Bingcheng, PANG Chengkai, WU Di, et al. High-speed photon-counting laser ranging for broad range of distances[J]. Scientific Reports, 2018, 8(1): 4198. doi: 10.1038/s41598-018-22675-1.
    [18] LI Liangsheng, LIU Maoxin, YOU Wenlong, et al. Optimizing single-photon quantum radar detection through partially postselected filtering[J]. Physical Review A, 2024, 109(3): 033704. doi: 10.1103/PhysRevA.109.033704.
    [19] MARKUS T, NEUMANN T, MARTINO A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273. doi: 10.1016/j.rse.2016.12.029.
    [20] KOSTAMOVAARA J, HUIKARI J, HALLMAN L, et al. On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques[J]. IEEE Photonics Journal, 2015, 7(2): 7800215. doi: 10.1109/JPHOT.2015.2402129.
    [21] TAN Zhiyong, WANG Hongyu, WAN Wenjian, et al. Dual-beam terahertz quantum cascade laser with >1 W effective output power[J]. Electronics Letters, 2020, 56(22): 1204–1206. doi: 10.1049/el.2020.1376.
    [22] TANG Longhuang, XU Degang, WANG Yuye, et al. Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range[J]. Optics Express, 2019, 27(16): 22808–22818. doi: 10.1364/OE.27.022808.
    [23] BOSCO L, FRANCKIÉ M, SCALARI G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K[J]. Applied Physics Letters, 2019, 115(1): 010601. doi: 10.1063/1.5110305.
    [24] WAN W J, LI Hua, and CAO J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation[J]. Optics Express, 2018, 26(2): 980–989. doi: 10.1364/OE.26.000980.
    [25] ECHTERNACH P M, VAN BERKEL S, BEYER A D, et al. Large array of single-photon counting quantum capacitance detectors[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(2): 211–216. doi: 10.1109/TTHZ.2021.3126542.
    [26] 石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学: 物理学 力学 天文学, 2021, 51(5): 054203. doi: 10.1360/SSPMA-2020-0274.

    SHI Lili, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(5): 054203. doi: 10.1360/SSPMA-2020-0274.
    [27] 罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学: 物理学 力学 天文学, 2021, 51(5): 054202. doi: 10.1360/SSPMA-2020-0255.

    LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(5): 054202. doi: 10.1360/SSPMA-2020-0255.
    [28] LIU Kang, LUO Chenggao, YI Jun, et al. Target detection method using heterodyne single-photon radar at terahertz frequencies[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3505605. doi: 10.1109/LGRS.2021.3070546.
    [29] PANG Shuang, ZENG Yang, YANG Qi, et al. Study on terahertz RCS scaled measurements for metal plates of rough surfaces[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(7): 813–827. doi: 10.1007/s10762-021-00813-7.
    [30] GOODMAN J W. Some effects of target-induced scintillation on optical radar performance[J]. Proceedings of the IEEE, 1965, 53(11): 1688–1700. doi: 10.1109/PROC.1965.4341.
    [31] MANDEL L. Fluctuations of photon beams: The distribution of the photo-electrons[J]. Proceedings of the Physical Society, 1959, 74(3): 233–243. doi: 10.1088/0370-1328/74/3/301.
  • 加载中
图(18)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  184
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-27
  • 修回日期:  2024-04-27
  • 网络出版日期:  2024-05-30
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回