基于极化时变调控表面的有源欺骗干扰辨识方法

陈焱 王占领 庞晨 李永祯 王壮

陈焱, 王占领, 庞晨, 等. 基于极化时变调控表面的有源欺骗干扰辨识方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24028
引用本文: 陈焱, 王占领, 庞晨, 等. 基于极化时变调控表面的有源欺骗干扰辨识方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24028
CHEN Yan, WANG Zhanling, PANG Chen, et al. Radar active deception jamming recognition method based on the time-varying polarization-conversion metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24028
Citation: CHEN Yan, WANG Zhanling, PANG Chen, et al. Radar active deception jamming recognition method based on the time-varying polarization-conversion metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24028

基于极化时变调控表面的有源欺骗干扰辨识方法

doi: 10.12000/JR24028
基金项目: 国家自然科学基金(61971429, 61921001, 62301580),博士后基金(2022M723917)
详细信息
    作者简介:

    陈 焱,博士生,主要研究方向为极化调控技术及雷达对抗技术

    王占领,博士,助理研究员,主要研究方向为极化阵列雷达及对抗技术

    庞 晨,博士,副研究员,主要研究方向为极化信息处理、雷达抗干扰与识别技术

    李永祯,博士,研究员,主要研究方向为雷达极化信息处理、空间电子对抗、目标检测与识别

    王 壮,博士,教授,主要研究方向为雷达信息处理、空间目标监视、自动目标识别

    通讯作者:

    王占领 wangzhanling17@nudt.edu.cn

  • 责任主编:全英汇 Corresponding Editor: QUAN Yinghui
  • 中图分类号: TN957

Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface

Funds: The National Natural Science Foundation of China (61971429, 61921001, 62301580), China Postdoctoral Science Foundation (2022M723917)
More Information
  • 摘要: 聚焦雷达对抗中极化信息获取与利用的应用需求,该文研究了基于极化时变调控表面的有源欺骗干扰辨识方法。首先,设计了一套在9.6~10.1 GHz频带内支持3 bit相位量化的各向异性相位调制表面,通过优化相位调制编码序列,实现了极化态按需调控。然后,将极化调控表面加装在单极化雷达天线上,使天线发射和接收电磁波的极化态沿特定极化轨道变化,通过提取目标与有源欺骗干扰的极化域差异,实现两者辨识。仿真分析表明,在3种不同的极化轨道约束下,干扰与目标均具有显著的聚类效应,可获得稳定的干扰辨识效果。相较于依赖双极化或全极化雷达体制的干扰辨识方法,该文所提方法兼具低成本与高效性,在雷达抗干扰中具有很大的应用潜力。

     

  • 图  1  基于相位调制编码的极化时变调控超表面及极化调控原理示意图

    Figure  1.  Schematic diagram of time-varying polarization-converting metasurface based on phase-modulated coding and its mechanism of polarization modulation

    图  2  不同相位量化位数及编码序列长度下,等效反射系数幅/相分布图

    Figure  2.  The amplitude-ratio and phase-difference distribution of the effective reflection coefficients with different coding bits and coding length

    图  3  各向异性相位调制表面单元的三维拓扑结构图及详细几何参数

    Figure  3.  3D topology expanded view of the anisotropy phase-modulated metasurface unit cell with the detailed geometricparameters

    图  4  相位调制表面各极化通道反射特性仿真分析

    Figure  4.  Simultated reflection characteristics of each polarization channel of the phase-modulated metasurface

    图  5  不同角度入射波照射下相位调制表面反射相位稳定性分析

    Figure  5.  Phase stability analysis of the metasurface for different incidence angles

    图  6  两种特定极化态对应的相位调制编码序列及偏置电压编码序列(入射波为45°线极化)

    Figure  6.  Coding sequence for the specific polarization states (with 45° linear polarization incidence)

    图  7  基于极化时变调控方法调控得到的3条极化轨道在Poincaré球上的分布

    Figure  7.  The distribution of three polarization trajectories on Poincaré sphere generated by the method proposed in this paper

    图  8  “大圆”轨道约束下的有源欺骗干扰与目标回波的极化域特征分布

    Figure  8.  Polarization domain characteristics of the target signal and the active detection jamming under the constraint of “great circle” trajectory

    图  9  “8”字轨道(过南北极)约束下的有源欺骗干扰与目标回波的极化域特征分布

    Figure  9.  Polarization domain characteristics of the target signal and the active detection jamming under the constraint of “8” likely trajectory through north and south poles

    图  10  “8”字轨道(未过南北极)约束下的有源欺骗干扰与目标回波的极化域特征分布

    Figure  10.  Polarization domain characteristics of the target signal and the active detection jamming under the constraint of “8” likely trajectory without north and south poles

    表  1  3 bit量化相位及偏置电压对应关系

    Table  1.   Corresponding relationship between 3 bit quantization phase and bias voltage

    水平极化 垂直极化
    VDC (V) $ \Delta \varphi $ (°) VDC (V) $ \Delta \varphi $ (°)
    0 0 0 0
    2.6 45 2.7 45
    3.2 89 3.5 90
    3.5 135 4.5 135
    3.9 180 4.6 179
    4.5 226 5.1 225
    6.0 270 7.0 270
    14.0 315 15.0 314
    下载: 导出CSV
  • [1] ROOME S J. Digital radio frequency memory[J]. Electronics & Communication Engineering Journal, 1990, 2(4): 147.
    [2] 曹旭源. 基于DRFM的雷达干扰技术研究[D]. [硕士论文], 西安电子科技大学, 2013: 5–19.

    CAO Xuyuan. Research on jamming against radar based on digital radio frequency memory[D]. [Master dissertation], Xidian University, 2013: 5–19.
    [3] 高佳旭. 雷达信号有源干扰技术研究及实现[D]. [硕士论文], 哈尔滨工程大学, 2021: 13–18.

    GAO Jiaxu. Research and realization of radar signal active jamming technology[D]. [Master dissertation], Harbin Engineering University, 2021: 13–18.
    [4] 肖顺平, 徐振海, 代大海, 等. 雷达极化技术[M]. 北京: 清华大学出版社, 2022: 1–51.

    XIAO Shunping, XU Zhenhai, DAI Dahai, et al. Radar Polarization Techniques[M]. Beijing: Tsinghua University Press, 2022: 1–51.
    [5] 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039.

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039.
    [6] 施龙飞, 马佳智, 庞晨, 等. 极化雷达信号处理与抗干扰技术[M]. 北京: 国防工业出版社, 2019: 1–13.

    SHI Longfei, MA Jiazhi, PANG Chen, et al. Signal Processing and Anti-interference Techniques for Polarimetric Radar[M]. Beijing: National Defense Industry Press, 2019: 1–13.
    [7] 马佳智, 施龙飞, 徐振海, 等. 单脉冲雷达多点源参数估计与抗干扰技术进展[J]. 雷达学报, 2019, 8(1): 125–139. doi: 10.12000/JR18093.

    MA Jiazhi, SHI Longfei, XU Zhenhai, et al. Overview of multi-source parameter estimation and jamming mitigation for monopulse radars[J]. Journal of Radars, 2019, 8(1): 125–139. doi: 10.12000/JR18093.
    [8] 施龙飞, 任博, 马佳智, 等. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 1–7, 29. doi: 10.16592/j.cnki.1004-7859.2016.04.001.

    SHI Longfei, REN Bo, MA Jiazhi, et al. Recent developments of radar anti-interference techniques with polarimetry[J]. Modern Radar, 2016, 38(4): 1–7, 29. doi: 10.16592/j.cnki.1004-7859.2016.04.001.
    [9] 李永祯, 王雪松, 肖顺平, 等. 基于IPPV的真假目标极化鉴别算法[J]. 现代雷达, 2004, 26(9): 38–42. doi: 10.3969/j.issn.1004-7859.2004.09.011.

    LI Yongzhen, WANG Xuesong, XIAO Shunping, et al. A new polarization discrimination algorithm for active decoy and radar target based on IPPV[J]. Modern Radar, 2004, 26(9): 38–42. doi: 10.3969/j.issn.1004-7859.2004.09.011.
    [10] 施龙飞, 王雪松, 肖顺平. 转发式假目标干扰的极化鉴别[J]. 中国科学 F辑: 信息科学, 2009, 39(4): 468–475.

    SHI Longfei, WANG Xuesong, and XIAO Shunping. Polarization discrimination between repeater false-target and radar target[J]. Science in China Series F: Information Sciences, 2009, 39(4): 468–475.
    [11] ZONG Zhiwei, SHI Longfei, LI Yongzhen, et al. Detection-discrimination method for multiple repeater false targets based on radar polarization echoes[J]. Radioengineering, 2014, 23(1): 104–110.
    [12] 施龙飞, 帅鹏, 王雪松, 等. 极化调制假目标干扰的鉴别[J]. 信号处理, 2008, 24(6): 894–899. doi: 10.3969/j.issn.1003-0530.2008.06.002.

    SHI Longfei, SHUAI Peng, WANG Xuesong, et al. Polarization discrimination between modulation polarization decoy and radar target[J]. Signal Processing, 2008, 24(6): 894–899. doi: 10.3969/j.issn.1003-0530.2008.06.002.
    [13] 王雪松. 宽带极化信息处理的研究[D]. [博士论文], 国防科学技术大学, 1999: 21–26, 127–179.

    WANG Xuesong. Study on wide-band polarization information processing[D]. [Ph.D. dissertation], National University of Defense Technology, 1999: 21–26, 127–179.
    [14] 蒋仁培, 苏丽萍. 雷达极化问题和铁氧体变极化技术[J]. 现代雷达, 2001, 23(1): 65–69, 72. doi: 10.3969/j.issn.1004-7859.2001.01.014.

    JIANG Renpei and SU Liping. Problem of radar polarization and technique of ferrite variable polarization[J]. Modern Radar, 2001, 23(1): 65–69, 72. doi: 10.3969/j.issn.1004-7859.2001.01.014.
    [15] 蒋仁培, 苏丽萍, 魏克珠. 广义铁氧体变极化理论[J]. 微波学报, 2000, 16(4): 336–342. doi: 10.3969/j.issn.1005-6122.2000.04.002.

    JIANG Renpei, SU Liping, and WEI Kezhu. Generalized theory of ferrite variable polarization[J]. Journal of Microwaves, 2000, 16(4): 336–342. doi: 10.3969/j.issn.1005-6122.2000.04.002.
    [16] KARAMIRAD M, GHOBADI C, and NOURINIA J. Metasurfaces for wideband and efficient polarization rotation[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1799–1804. doi: 10.1109/TAP.2020.3012828.
    [17] WANG Yidan, SHI Hongyu, CHEN Juan, et al. Digital polarization programmable metasurface for continuous polarization angle rotation and radar applications[J]. Frontiers in Materials, 2022, 9: 931868. doi: 10.3389/fmats.2022.931868.
    [18] TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383.
    [19] YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
    [20] YANG Heng, WANG Shicong, LI Peng, et al. A broadband multifunctional reconfigurable polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5759–5767. doi: 10.1109/TAP.2023.3266498.
    [21] LI You, WANG Yi, and CAO Qunsheng. Design of a multifunctional reconfigurable metasurface for polarization and propagation manipulation[J]. IEEE Access, 2019, 7: 129183–129191. doi: 10.1109/ACCESS.2019.2939200.
    [22] CERVENY M, FORD K L, and TENNANT A. Reflective switchable polarization rotator based on metasurface With PIN diodes[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1483–1492. doi: 10.1109/TAP.2020.3026883.
    [23] LIN Baoqin, GUO Jianxin, LV Lintao, et al. Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves[J]. Applied Physics A, 2019, 125(2): 76. doi: 10.1007/s00339-018-2368-9.
    [24] HAO Jiaming, YUAN Yu, RAN Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908.
    [25] WANG Shuai, DENG Zilan, WANG Yujie, et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers[J]. Light: Science & Applications, 2021, 10(1): 24. doi: 10.1038/s41377-021-00468-y.
    [26] KE Junchen, DAI Junyan, CHEN Mingzheng, et al. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface[J]. Small Structures, 2021, 2(1): 2000060. doi: 10.1002/sstr.202000060.
    [27] HU Qi, CHEN Ke, ZHANG Na, et al. Arbitrary and dynamic Poincaré sphere polarization converter with a time-varying metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101915. doi: 10.1002/adom.202101915.
    [28] ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382.
    [29] 胡琪, 陈克, 郑依琳, 等. 时变极化编码表面及其在无线通信中的应用[J]. 雷达学报, 2021, 10(2): 304–312. doi: 10.12000/JR21042.

    HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042.
    [30] DAI Junyan, ZHAO Jie, CHENG Qiang, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light: Science & Applications, 2018, 7: 90.
    [31] 戴俊彦. 时域超表面理论研究与应用[D]. [博士论文], 东南大学, 2019: 41.

    DAI Junyan. Research and application of time-domain metasurface[D]. [Ph.D. dissertation], Southeast University, 2019: 41.
    [32] 程强, 崔铁军. 电磁超材料[M]. 南京: 东南大学出版社, 2022: 259–262.

    CHENG Qiang, CUI Tiejun. Metamaterials[M]. Nanjing: Southeast University Press, 2022: 259–262.
    [33] SUN Guang, WANG Junjie, XING Shiqi, et al. A flexible conformal multifunctional time-modulated metasurface for radar characteristics manipulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, doi: 10.1109/TMTT.2023.3337646.
    [34] MACOM. MA46H120 varactor datasheet[EB/OL]. https://www.macom.com/products/product-detail/MA46H120.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  28
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-04-25

目录

    AI智能化辅读

    AI智能问答

        /

        返回文章
        返回