Processing math: 100%

基于多角度双层偏差度量的封闭空间SAR多径抑制方法

林赟 赵甲萌 王彦平 李洋 申文杰 白泽朝 蒋雯

滑文强, 王爽, 郭岩河, 等. 基于邻域最小生成树的半监督极化SAR图像分类方法[J]. 雷达学报, 2019, 8(4): 458–470. doi: 10.12000/JR18104
引用本文: 林赟, 赵甲萌, 王彦平, 等. 基于多角度双层偏差度量的封闭空间SAR多径抑制方法[J]. 雷达学报(中英文), 2024, 13(4): 761–776. doi: 10.12000/JR24076
HUA Wenqiang, WANG Shuang, GUO Yanhe, et al. Semi-supervised PolSAR image classification based on the neighborhood minimum spanning tree[J]. Journal of Radars, 2019, 8(4): 458–470. doi: 10.12000/JR18104
Citation: LIN Yun, ZHAO Jiameng, WANG Yanping, et al. Closed space SAR multipath suppression method based on multi-angle dual-layer deviation measurement[J]. Journal of Radars, 2024, 13(4): 761–776. doi: 10.12000/JR24076

基于多角度双层偏差度量的封闭空间SAR多径抑制方法

DOI: 10.12000/JR24076
基金项目: 国家自然科学基金(62131001, 62371005),北京市教育委员会创新团队建设计划项目(IDHT20190501)
详细信息
    作者简介:

    林 赟,副教授,研究方向为智能雷达成像技术与图像处理和信息提取技术

    赵甲萌,硕士生,研究方向为SAR成像技术和多径抑制方法

    王彦平,教授,研究方向为雷达成像安全监测技术,遥感智能信息处理及应用

    李 洋,副教授,研究方向为机器学习、传感器定位与构图,多目标航迹生成

    申文杰,讲师,研究方向为SAR信号处理,包括成像、动目标检测和参数估计等

    白泽朝,讲师,研究方向为星载、地基InSAR技术理论和应用

    蒋 雯,讲师,研究方向为雷达智能感知与对抗、雷达系统仿真

    通讯作者:

    王彦平 wangyp@ncut.edu.cn

  • 责任主编:毕辉 Corresponding Editor: BI Hui
  • 中图分类号: TN95

Closed Space SAR Multipath Suppression Method Based on Multi-angle Dual-layer Deviation Measurement

Funds: The National Natural Science Foundation of China (62131001, 62371005), The Innovation Team Building Support Program of the Beijing Municipal Education Commission (IDHT20190501)
More Information
  • 摘要: 合成孔径雷达(SAR)具有全天时全天候非接触式监测的优势,是封闭空间安全监测的重要工具。然而,SAR应用于复杂封闭空间时,易受多径效应影响,导致图像存在大量虚像,严重影响判读。现有方法需要场景先验进行多径推算或通过子孔径加权融合抑制多径,但都难以准确区分多径虚像与目标图像。该文提出了一种新的多角度双层偏差度量方法,可有效获取多径虚像与目标间的特征差异。该方法首先采用大视角差对观测场景进行多角度观测,可充分利用多径虚像位置随观测角度变化,而实际目标位置保持不变的特性。然后使用双层偏差度量算法,该算法根据多径在多角度序列中的稀疏性,两次计算序列幅度值与序列均值的偏差,精准检测出稀疏、不稳定的多径成分并去除,对剩余稳定成分取均值。这样,在保留目标信息的同时有效抑制多径。最后,仿真和毫米波雷达实际数据处理验证了该文方法的有效性。

     

  • 极化SAR图像分类作为极化SAR图像理解与解译的重要研究内容,近年来受到越来越多研究者的关注,并广泛应用到各个领域,如土地覆盖类型判别、地面目标检测、地质勘探、植被种类判别等[13]。根据分类方法中标记样本和无标记样本的利用方式,极化SAR地物分类方法主要可以分为3种类型:无监督分类方法[4,5]、监督分类方法[6,7]和半监督分类方法[8,9]

    对于极化SAR图像分类问题,监督分类方法通常比无监督分类更容易获得好的分类结果,但是监督分类方法通常需要充足的标记样本作为训练样本,而实际中标记样本的获取是非常困难,需要耗费大量的人力物力。而无标记数据获取相对容易,并且无标记的数据也能反映数据的某些信息,能够有效地帮助学习分类器。因此,如何利用大量的无标记样本对少量的标记样本进行补充辅助训练的半监督学习方法,引起了研究者的广泛关注,成为了当前研究的热点。近年来,很多半监督分类方法被提出来,如自训练(Self-training)方法[10]、协同训练方法(Co-training和Tri-training)[11,12]、标签传播聚类算法、基于图的半监督分类算法[13,14]和基于半监督的神经网络算法[1517]等。然而针对极化SAR图像分类问题的半监督方法研究较少,Hansch[18]提出了一种基于聚类算法的半监督极化SAR分类方法,将半监督思想同聚类方法相结合,通过被选择未标记样本对聚类中心进行约束,利用未标记样本的约束影响聚类中心,获得更好的分类结果。为利用极化SAR数据中的空间信息,Liu等人[19]提出了基于邻域约束半监督特征提取的极化SAR图像分类方法。为使半监督训练中选择的未标记样本具有更高的可靠性和多样性,Wang等人[20]提出了基于改进协同训练的半监督极化SAR图像分类方法,通过协同训练的方式选择多样性的样本,通过预选择的方法增加被选择样本的可靠性。此外,结合深度学习方法和半监督学习思想,Geng等人[21]提出了基于超像素约束的深度神经网络半监督极化SAR分类方法。但是这些半监督分类方法都需要一定的标记样本,在标记样本非常少,只有几个标记像素的条件下,很难获得较好的分类结果。因此,本文针对此问题,提出一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法利用邻域最小生成树方法辅助半监督学习,在自训练的过程中通过邻域最小生成树辅助的方式选择更可靠的无标记样本扩大训练样本集,改善分类器的性能。

    自训练学习方法是一种典型的半监督学习方法,该方法利用现有的标记数据训练得到的模型对无标记的样本进行预测,选择可靠性高的样本以及其被赋予的标签加入到标记样本集中,通过不断循环的自训练,逐渐增加训练集中的样本数量并逐步改善分类器性能,该方法的框架图如图1所示。由图1可以看出,自训练方法的关键是选择可靠性的样本,如果选择的样本不正确,使错误的样本加入到训练集中,不仅不能使分类器性能得到改善反而会降低分类器的性能。因此,如何选择高置信度的样本成为自训练算法的关键。而在极化SAR图像分类中,由于只有少量的标记样本,在少量标记样本下训练的分类器是一个弱分类器,直接在弱分类器的结果中选择的样本很难保证其可靠性。如果将错误标记的样本加入到标记样本集中,反而会使分类器的性能下降。因此,为增加被选择样本的可靠性,结合极化SAR图像像素间的空间信息,本文提出了基于邻域最小生成树的样本选择方法,通过邻域最小生成树辅助选择的方法增加被选择样本的可靠性。

    图  1  自训练方法
    Figure  1.  Self-training method

    因此,本文算法的主要贡献为:(1)针对极化SAR图像分类中标记样本非常少的问题,提出了一种新的基于邻域最小生成树的半监督极化SAR图像分类方法,该方法同时利用未标记样本和标记样本的信息有效地提高分类正确率;(2)为增加自训练过程中被选择样本的可靠性,结合极化SAR图像像素间的空间信息,在最小生成树的基础上针对极化SAR图像分类的特性,提出了基于邻域最小生成树样本选择方法。

    在极化SAR数据中,每个像素点都可以表示为一个相干矩阵T或协方差矩阵C

    [C]=[|SHH|22SHHSHVSHHSVV2SHVSHH2|SHV|22SHVSVVSVVSHH2SVVSHV|SVV|2]

    (1)

    其中,HH表示水平发射水平接收,VV表示垂直发射垂直接收,HV表示水平发射垂直接收。由协方差矩阵C的矩阵表示形式可以看出,协方差矩阵是一个对角线为实数的复共轭对称矩阵,并且由协方差矩阵转换的9维特征向量通常可以作为极化SAR数据特征的一种表示,并在极化图像处理中取得良好的效果[9],该向量表示为

    view=[C11,C22,C33,real(C12),imag(C12),real(C13),imag(C13),real(C23),imag(C23)]

    (2)

    其中,real()表示实部,imag()表示虚部。

    图2(a)为美国旧金山地区的极化SAR数据,图2(b)图2(j)为由该数据的协方差矩阵转化的9维特征向量中每一元素增强10倍的灰度图。由9维特征向量每一元素的灰度图可以看出,每一元素都可以基本描述原始图像的大致信息,并且不同元素的灰度图都不相同,具有一定互补性,因此可以直接做为极化SAR图像的特征信息来描述极化SAR图像。

    图  2  极化SAR协方差矩阵中9个元素的灰度值
    Figure  2.  The gray value of 9 elements in PolSAR covariance matrix

    为增强自训练过程中被选样本的可靠性,在训练过程中逐步优化基分类器,结合极化SAR图像像素间的空间邻域信息,本文提出了基于邻域最小生成树的样本选择方法。

    在图论问题中,对于连通且没有环路的连通图称为树,在一个连通图里删除所有的环路而形成的树叫做该图的生成树,其中具有最小总权重的树,被称为最小生成 (Minimum Spanning Tree, MST)[22]。定义为:在无带权的无向连通图G中,W(vi,vj)表示任意两个节点ij之间边的权重的大小,若无向图G中存在着权重之和最小的生成树,则该树就是无向图G的最小生成树。图3为带权值的连通图G和其最小生成树。

    图  3  带权无向图G及其最小生成树
    Figure  3.  Weighted undirected graph G and its minimum spanning tree

    图3(a)可以看出任意两个节点都通过带权重的边相连,对于无向图G来说,可以由不同的节点出发得到不同的生成树模型。图3(b)为由权重最小的边遍历所有节点得到的最小生成树,对于无向图G来说,图3(b)是其唯一的最小生成树。

    本文采用Prim算法[23]计算最小生成树,该算法是一种产生最小生成树的算法。该算法从给定的顶点开始,每次选择一个与当前顶点最近的一个点,将该点与顶点之间的边加入到树中。其形式描述如下:

    步骤1 输入:在一个加权无向图G中,顶点集合为V,权值边的集合为E

    步骤2 初始化:Vr={x},其中x为初始顶点,Er={}为空;

    步骤3 重复下列操作,直到所有的顶点都加入到集合Vr中:(1)在集合E中选择权重最小的边[u, v],其中uVr中的元素,v为集合V中的元素,且vVr; (2)将v加入到集合Vr中,将边[u, v]加入到集合Er中;

    步骤4 输出:用集合VrEr表示所得到的最小生成树。

    通过对最小生成树算法分析可以看出,最小生成树的生成过程非常符合极化SAR图像的分类过程,极化SAR图像中每一像素点对应生成树中的节点,像素之间的相似性关系类似于生成树中节点间的边的权重,因此最小生成树方法非常适用于极化SAR图像的分类。然而要生成最小生成树,首先要构建无向图G,顶点的集合V和边的集合E,然而对大小为N×N的极化SAR图像来说,需要计算N2(N21)/2条边,需要耗费大量的时间。而极化SAR图像分类是对图像中每一个像素点分类,因此根据图像中像素点之间的空间关系,相邻的像素之间具有更高的相似性,提出了基于像素点空间邻域的Prim最小生成树算法,该算法描述如下:

    步骤1 构建无向图G(V, E),其中V为顶点(已标记像素点),用式(3)计算每一顶点于其8邻域边的集合E

    步骤2 选择顶点其8邻域内与其边的权值最小的边,并对与其权值最小的像素点进行标记,然后将其作为标记样本加入到顶点集合V中;

    步骤3 重复步骤1—步骤2过程直到选择完整幅图像中所有的像素点。

    该方法中需要计算各个顶点之间边的距离,由于极化SAR数据服从复Wishart分布,因此在极化SAR图像中,两个像素点之间的相似距离通常采用Wishart距离[24]表示

    wi,j=12Tr((Ti)1Tj+(Tj)1Ti)q
    (3)

    其中,Tr()表示矩阵的迹,TiTj分别表示像素点ij的相干矩阵,对于发射与接收是一体的雷达,由于其互易性,则q=3,对于发射和接收不是一体的雷达,q=4

    图4为该算法的生成过程,图中绿色的矩形表示初始的顶点,灰色的矩形表示其邻域的顶点,矩形中的数字表示中心像素点与邻域像素点的距离,距离越小越相似。第1次学习过程,选择初始顶点邻域边最小的顶点,距离为‘1’的点,如图4(b)所示,然后再在新的顶点集合的邻域内选择边最小的顶点,如图4(c)所示,添加到以初始顶点为根的树的集合中,依次循环,直到选择完所有的顶点为止。

    图  4  基于邻域的最小生成树生成过程
    Figure  4.  The spanning process of neighborhood minimum spanning tree

    本文针对极化SAR图像分类中只有少量标记样本的问题,为在少量标记样本的条件下获得较高的分类正确率,在传统自训练方法的基础上提出了基于邻域最小生成树的半监督极化SAR图像分类方法。该方法的核心是在自训练的过程中由大量的无标记样本中选择可靠的样本,将其添加到标记样本中,扩大标记样本的数量,逐渐优化分类器性能,最终实现提高分类正确率的目的。为此,结合最小生成树方法和极化SAR图像中像素点的空间信息,提出了基于邻域最小生成的样本选择方法,增加被选择样本的可靠性。本文所提方法的整个框架图如图5所示,具体步骤如下:

    图  5  基于邻域最小生成树的半监督极化SAR分类方法
    Figure  5.  Semi-supervised PolSAR classification based on the neighborhood minimum spanning tree

    步骤1 为降低斑点噪声对极化SAR数据的影响,采用精致Lee滤波[25]对极化SAR数据滤波,滤波窗口大小为7×7

    步骤2 以初始的标记像素点为初始顶点,构建无向图G,生成多个邻域最小生成树,每一个树中的像素点具有相同的标记;

    步骤3 利用初始的标记样本点,以view为每一个像素点的特征信息训练SVM分类器,并用训练好的SVM分类器对邻域最小生成树标记的样本进行测试;

    步骤4 挑选由分类器测试得到的结果中与邻域最小生成树生成的结果中标记一致的样本,添加到初始的标记样本集中,更新标记样本集;

    步骤5 重复步骤2到步骤4过程t次,直到得到满意的分类器;

    步骤6 用训练好的分类器对剩余样本进行测试。

    本文采用3组真实的极化SAR数据:(1)荷兰Flevoland 地区1989年8月由L波段的NASA/JPI AIRSAR 获得,该数据包含有750×1024个像素点,空间分辨率为6 m×12.1 m,主要包含15类农作物,如图6所示;(2)荷兰地区2008年4月由C波段的Radarsat-2获取的极化SAR数据,该数据主要包含1400×1200个像素点,空间分辨率为12 m×8 m,主要包含城市、水域、深林和农田4种类别,如图7所示;(3)美国旧金山地区2008年由C波段的Radarsat-2获取的极化SAR数据,该数据主要包含1300×1300个像素点,空间分辨率为12 m×8 m,主要包含高密度城市、低密度城区、水域、植被和开发区域5种类别,如图8所示。

    图  6  Flevoland地区AIRSAR L波段数据不同方法的分类结果
    Figure  6.  Classification results of the Flevoland data acquired by AIRSAR
    图  7  Flevoland地区Radarsat-2 C波段数据不同方法的分类结果
    Figure  7.  Classification result of the Flevoland data acquired by Radarsat-2
    图  8  旧金山地区Radarsat-2 C波段数据不同方法的分类结果
    Figure  8.  Classification result of the San Francisco data acquired by Radarsat-2

    本文以SVM为基本分类器,采用径向基核函数和5倍的交叉验证,为了验证本文算法的有效性,将本文方法与传统的基于自训练的半监督方法(Self-training)[10]、基于SVM分类器的监督分类方法(采用径向基核函数和5倍的交叉验证)[26]和监督Wishart方法[27]进行比较,并用总分类正确率和Kappa系数对实验结果进行评估,所有的实验进行10次,用平均值表示最终的分类结果。

    本实验中每类别选择不同数量的标记样本(10, 8, 6, 4)作为训练样本。图6(a)为Pauli分解的RGB图,图6(a1)为真实地物。实验结果如图6表1表2所示。图6(b)为本文方法的分类结果,图6(c)为传统Self-training算法的分类结果,图6(d)为监督Wishart方法的分类结果,图6(e)为SVM方法的分类结果。 表1为每类训练样本数量为10时不同方法的分类正确率。

    表  1  AIRSAR L波段的Felvoland地区不同分类算法的分类精度(%)
    Table  1.  Classification accuracy of the Flevoland area acquired by AIRSAR L band (%)
    区域方法
    WishartSVMSelf-training本文方法
    Stembeans91.4870.0790.8298.75
    Rapeseed61.8338.0267.1459.58
    Bare soil97.5186.8970.9796.75
    Potatoes79.4758.3880.2781.99
    Beet92.3585.6195.0594.60
    Wheat 267.4371.8067.3989.86
    Peas93.1077.7095.2497.56
    Wheat 382.0882.4294.3397.05
    Lucerne84.5340.7781.6795.06
    Barley81.9698.2998.6298.39
    Wheat81.4668.2885.3485.41
    Grasses66.4965.0381.7580.08
    Forest84.2161.0377.6694.77
    Water46.8565.3269.3993.35
    Building81.7778.912.1885.58
    OA79.4070.3077.1989.92
    下载: 导出CSV 
    | 显示表格
    表  2  AIRSAR L波段的Felvoland 地区不同训练样本的分类结果
    Table  2.  Classification results of the Flevoland area acquired by AIRSAR L band with different number of training samples
    方法训练样本数
    4 6 8 10
    OA (%)KappaOA (%)KappaOA (%)KappaOA (%)Kappa
    Wishart74.620.7215 76.190.7459 78.780.7656 80.260.7831
    SVM56.070.542358.120.561164.420.610270.300.6682
    Self-training63.360.602568.420.656973.890.714677.230.7489
    本文方法79.330.788883.060.809386.900.841689.920.8852
    下载: 导出CSV 
    | 显示表格

    表1可以看出,本文分类方法的分类正确率为89.92%,高于Self-training分类方法12.73%,高于SVM分类方法19.62%,高于监督Wishart方法10.52%,而且本文方法中大部分类别的分类正确率都高于其它的对比方法。这主要是因为本文所提出半监督分类算法能够有效地利用标记样本和无标记样本的信息,并采用邻域最小生成树的策略辅助选择高可靠性的样本,改善了基分类器的性能。但是本文方法在Rapeseed的分类正确率只有59.58%,低于Self-training方法7.56%。由图6(b)可以看出,在本文方法中一部分Rapeseed被分为了Wheat 2和Wheat 3,这主要是这几种农作物的叶子形状非常相近,很难区别。对比图6(c)可以看出,在Self-training方法中一部分Wheat 2和Wheat 3被错分为Rapeseed,因此虽然在Self-training方法中Rapeseed的分类正确率高,但是Wheat 2和Wheat 3分类正确率要低于本文方法的分类结果。此外本文方法在Bare soil区域的分类正确率虽然低于Wishart方法的分类正确率,但是分类正确率也已经大于96%。而且由图6(d)可以看出,Wishart方法将很大一部分Water区域错划分为Bare soil区域,使Water区域的分类正确率只有46.85%,远低于本文方法在该区域的分类正确率93.35%。由表2可以看出不同标记样本时本文方法的分类正确率都要高于对比方法的分类结果;本文方法的Kappa系数也高于对比方法的Kappa系数,而且通过对比图6中本文方法和对比方法的分类结果表示,也可以看出本文方法的分类结果的区域一致性也比其它的对比方法好。

    本实验中分别选择每类别为不同数量的标记样本(10, 8, 6, 4)作为训练样本。图7(a)为Pauli分解的RGB图,图7(a1)为真实地物。实验结果如图7表3表4所示。图7(b)为本文算法的分类结果,图7(c)为Self-training方法的分类结果,图7(d)为监督Wishart方法的分类结果,图7(e)为SVM方法的分类结果。 表3为每类选10个标记样本时,不同方法的分类正确率。

    表  3  Radarsat-2 C波段的Felvoland地区不同分类算法的分类精度(%)
    Table  3.  Classification accuracy of the Flevoland area acquired by Radarsat-2 C band (%)
    区域方法
    WishartSVMSelf-training本文方法
    Urban69.6154.7563.9371.44
    Water98.7196.8399.1098.82
    Forest91.6565.2573.8383.63
    Cropland55.2778.9779.2382.24
    OA78.8173.9579.0284.03
    下载: 导出CSV 
    | 显示表格
    表  4  Radarsat-2 C波段的Felvoland 地区不同训练样本的分类结果
    Table  4.  Classification results of the Flevoland area acquired by Radarsat-2 C band with different number of training samples
    方法训练样本数
    4 6 8 10
    OA (%)KappaOA (%)KappaOA (%)KappaOA (%)Kappa
    Wishart69.210.5803 73.650.6239 76.810.6854 78.810.7026
    SVM50.790.415364.790.547170.050.596873.950.6394
    Self-training65.690.523370.410.591174.400.660579.450.7144
    本文方法76.710.676879.290.723582.020.764484.030.7882
    下载: 导出CSV 
    | 显示表格

    表3表4可以看出,本文方法的分类结果明显高于传统的Self-training方法,SVM方法和Wishart分类方法。由表4可以看出当每类训练样本数量10时,本文分类方法的分类正确率为84.03%,高于Self-training分类方法4.58%,高于SVM分类方法10.08%,高于监督Wishart方法5.22%。由表3可以看出本文方法在Urban和Cropland区域的分类正确率都要高于对比方法,但是在Forest区域的分类正确率低于监督Wishart方法的分类正确率。由图7(d)可以看出,这主要是因为Wishart方法中一部分Cropland区域被分为了Forest类,虽然Wishart方法的Water区域分类正确率高,但是Cropland区域的分类正确率只有55.27%,明显低于本文所提方法,而且本文方法Forest和Cropland区域总的分类正确率也要高于Wishart方法。而由表4可以看出选择不同数量的标记样本时,本文方法的分类正确率都要高于对比方法;同时本文方法的Kappa系数也高于对比方法的Kappa系数,而且通过对比图7中本文方法和对比方法的分类结果图,也可以看出本文方法的分类结果的区域一致性也比其它的对比方法要好。因此可以得出相同的结论,本文所提方法要明显优于传统的分类方法,尤其是在标记样本较少的情况下。

    本实验分别选择每类别为不同数量的标记样本(10, 8, 6, 4)作为训练样本。图8(a)为Pauli分解的RGB图,图8(a1)为真实地物。实验结果如图8表5表6所示。图8(b)为本文方法的分类结果,图8(c)为Self-training方法的分类结果,图8(d)为监督Wishart方法的分类结果,图8(e)为SVM方法的分类结果。表5为每类选10个标记样本时,不同方法的分类正确率。

    表  5  Radarsat-2 C波段的旧金山地区不同分类算法的分类结果(%)
    Table  5.  Classification accuracy of the San Francisco area acquired by radarsat-2 C Band (%)
    区域方法
    WishartSVMSelf-training本文方法
    Water98.7090.0498.0499.92
    Vegetation91.0378.5184.4591.50
    Low-Density Urban81.3042.3170.1875.05
    High-Density Urban42.5877.1533.0168.27
    Developed55.2624.0056.1658.81
    OA73.7762.4068.3778.71
    下载: 导出CSV 
    | 显示表格
    表  6  Radarsat-2 C波段的旧金山地区不同训练样本的分类结果
    Table  6.  Classification results of the San Francisco area acquired by Radarsat-2 C band with different number of training samples
    方法训练样本数
    4 6 8 10
    OA (%)KappaOA (%)KappaOA (%)KappaOA (%)Kappa
    Wishart68.090.5181 70.440.5439 72.490.5867 73.770.6011
    SVM50.240.281751.250.290556.310.362862.400.4342
    Self-training52.340.312658.620.366963.270.435768.420.5308
    本文方法70.870.548273.150.598675.230.628478.710.6852
    下载: 导出CSV 
    | 显示表格

    表5表6可以看出,本文方法的分类结果明显高于传统的Self-training方法,SVM方法和Wishart分类方法。由表6可以看出当每类训练样本数量10时,本文分类方法的分类正确率为78.71%,高于Self-training分类方法10.29%,高于SVM分类方法16.31%,高于监督Wishart方法4.94%。由表5可以看出本文方法在大部分区域的分类正确率都要高于对比方法,但是在Low-Density Urban区域的分类正确率低于监督Wishart方法的分类正确率。由图8(d)可以看出,这主要是因为Wishart方法中Low-Density Urban区域和High-Density Urban区域没有被有效地区分开,一部分的High-Density Urban区域被错分为Low-Density Urban,导致虽然Wishart方法的Low-Density Urban区域分类正确率高,但是High-Density Urban区域的分类正确率只有42.58%,明显低于本文所提方法,而且在本文方法中这两个区域总的分类正确率也要高于Wishart方法。而由表6可以看出当标记样本数量不同时,本文方法的分类正确率都要高于对比方法;对比本文方法的Kappa系数和对比方法的Kappa系数,可以发现本文方法的Kappa系数要明显高于对比方法的,而且通过对比图8中本文方法和对比方法的分类结果图,也可以看出本文方法的分类结果的区域一致性也比其它的对比方法要好。因此我们可以得出相同的结论,本文所提方法要明显优于传统的分类方法,尤其是在标记样本较少的情况下。

    前面的实验已经验证了本文方法的有效性,本节分析迭代次数(自训练次数)对实验结果的影响。图9(a)为迭代次数对分类正确率的影响,由图9(a)可以看出随着迭代次数的增加分类正确率逐渐增加,当迭代次数大于8次的时候分类正确率的增长逐渐减小趋于平滑。图9(b)为迭代次数所消耗的时间成本,由图9(b)可以看出随着迭代次数的增加所耗费的时间迅速增加,这主要是因为随着迭代次数的增加,标记样本数量增加,最小生成树的种子点数量增加,最小生成树所需要的时间增加,自训练分类器的时间也增加。

    图  9  迭代次数对实验结果的影响
    Figure  9.  The effects of number of iterations in the proposed method

    本文提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法能够有效地利用标记样本和无标记样本,通过邻域最小生成树辅助学习的方式选择高可靠性的样本,添加到标记样本集中,通过自训练的方式不断扩大标记样本集,优化分类器,使在只有少量标记样本时能够获得较高的分类正确率。并对3组真实极化SAR数据进行测试,实验结果表明本文方法能够获得满意的分类结果,尤其是在标记样本非常少的情况下。而且通过选择不同比例的训练样本实验表明相较于传统的方法本文方法获得的分类精度更高。此外,通过分析迭代次数对实验结果的影响实验表明,本文方法选择的无标记样本是可靠的,通过添加被选择的无标记样本扩大标记样本集逐渐改善分类器的性能。

  • 图  1  多角度观测几何模型

    Figure  1.  Multi-angle observation geometric model

    图  2  多径信号模型

    Figure  2.  Multipath signal model

    图  3  多角度序列融合算法示意图

    Figure  3.  Schematic diagram of multi-angle sequence fusion algorithm

    图  4  双层阈值偏差算法示意图

    Figure  4.  Schematic diagram of dual-layer threshold deviation algorithm

    图  5  仿真1实验处理结果

    Figure  5.  Simulation 1 experiment processing results

    图  6  算法中间结果可视化图

    Figure  6.  Visualization diagram of algorithm intermediate results

    图  7  噪声对算法的影响

    Figure  7.  The impact of noise on the algorithm

    图  8  仿真2实验处理结果

    Figure  8.  Simulation 2 experiment processing results

    图  9  实验1处理结果

    Figure  9.  Experiment 1 processing results

    图  10  实验2处理结果

    Figure  10.  Experiment 2 processing results

    1  多角度序列融合算法

    1.   Multi-angle sequence fusion algorithm

     输入:Pc, Pt
     输出:sum_vector
     1 // Phase 1: process Pc
     2 for i = 1 : length(Pc) do
     3  μ= mean(Pc[i]); //calculate average
     4  δf = |Pc[i]-μ|; //calculate deviations
     5  ¯δ = mean(δf); //calculate deviations metric
     6  validvalues = {xPc[i] | xμ¯δ};
     7  if validvalues ≠ 0 then
     8   Pc[i] = mean(validvalues);
     9  else
     10   Pc[i] = 0;
     11 end
     12 end
     13 // Phase 2: process Pt
     14 Pt = mean(Pt,2);
     15 // Phase 3: sequence fusion
     16 Pct = Pc + Pt;
     17 sum_vector = reshape(Pct).
    下载: 导出CSV

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数数值
    中心频率77 GHz
    带宽600 MHz
    方位向采样点数2048
    距离向采样点数1024
    轨道长度1.2 m
    频率间隔585.94 kHz
    距离分辨率0.2498 m
    孔径长度0.1 m
    下载: 导出CSV

    表  2  10个角度下多径虚像的位置坐标(m)

    Table  2.   Position coordinates of multipath virtual image at ten angles (m)

    角度 C1 C2 C12
    角度1 (0.28, 5.67) (0.29, 8.49) (5.90, 6.11)
    角度2 (0.43, 5.69) (0.44, 8.50) (5.87, 6.13)
    角度3 (0.58, 5.69) (0.59, 8.51) (5.80, 6.17)
    角度4 (0.70, 5.71) (0.73, 8.52) (5.75, 6.21)
    角度5 (0.82, 5.72) (0.88, 8.53) (5.67, 6.26)
    角度6 (0.92, 5.75) (1.01, 8.55) (5.59, 6.13)
    角度7 (1.00, 5.77) (1.13, 8.57) (5.50, 6.35)
    角度8 (1.07, 5.79) (1.25, 8.59) (5.41, 6.39)
    角度9 (1.10, 5.80) (1.35, 8.60) (5.32, 6.42)
    角度10 (1.12, 5.81) (1.44, 8.63) (5.22, 6.46)
    下载: 导出CSV

    表  3  实验参数

    Table  3.   Experimental parameters

    参数 数值
    载频 77 GHz
    发射天线数量 2
    接收天线数量
    使用通道数
    4
    1
    带宽 514.14 MHz
    ADC采样率 12500 ksps
    总采集时间 120 s
    轨道长度 1.2 m
    帧数目 60000
    采样点数 512
    单帧时长 2 ms
    子孔径长度 0.1 m
    下载: 导出CSV

    表  4  TCR性能对比

    Table  4.   TCR performance comparison

    方法 实验1 实验2
    双层子孔径融合法 1.796 14.194
    标准差度量法 2.407 22.725
    中心向量阈值法 2.481 24.887
    本文方法 3.096 27.162
    下载: 导出CSV
  • [1] ANGHEL A, VASILE G, CACOVEANU R, et al. Scattering centers detection and tracking in refocused spaceborne SAR images for infrastructure monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4379–4393. doi: 10.1109/TGRS.2015.2396773.
    [2] MA Peifeng, LIN Hui, WANG Weixi, et al. Toward fine surveillance: A review of multitemporal interferometric synthetic aperture radar for infrastructure health monitoring[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 207–230. doi: 10.1109/MGRS.2021.3098182.
    [3] CAO Jiaxuan, DING Yipeng, PENG Yiqun, et al. A machine learning-based algorithm for through-wall target tracking by Doppler TWR[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8501609. doi: 10.1109/TIM.2024.3369133.
    [4] XU Hang, LI Yong, LI Yingxin, et al. Through-wall human motion recognition using random code radar sensor with multi-domain feature fusion[J]. IEEE Sensors Journal, 2022, 22(15): 15123–15132. doi: 10.1109/JSEN.2022.3183292.
    [5] CHAN Y K and KOO V C. An introduction to synthetic aperture radar (SAR)[J]. Progress In Electromagnetics Research B, 2008, 2: 27–60. doi: 10.2528/PIERB07110101.
    [6] WEI Ziping, LI Bin, FENG Tao, et al. Area-based CFAR target detection for automotive millimeter-wave radar[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 2891–2906. doi: 10.1109/TVT.2022.3216013.
    [7] IHMEIDA M and SHAHZAD M. Enhanced change detection performance based on deep despeckling of synthetic aperture radar images[J]. IEEE Access, 2023, 11: 95734–95746. doi: 10.1109/ACCESS.2023.3307208.
    [8] HOSSEINY B, AMINI J, and AGHABABAEI H. Structural displacement monitoring using ground-based synthetic aperture radar[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103144. doi: 10.1016/j.jag.2022.103144.
    [9] FENG Ruoyu, DE GREEF E, RYKUNOV M, et al. Multipath ghost recognition for indoor MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5104610. doi: 10.1109/TGRS.2021.3109381.
    [10] LUO Haolan, ZHU Zhihao, JIANG Meiqiu, et al. An effective multipath ghost recognition method for sparse MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5111611. doi: 10.1109/TGRS.2023.3335454.
    [11] 孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报, 2024, 13(1): 23–45. doi: 10.12000/JR23134.

    KONG Lingjiang, GUO Shisheng, CHEN Jiahui, et al. Overview and prospects of multipath exploitation radar target detection technology[J]. Journal of Radars, 2024, 13(1): 23–45. doi: 10.12000/JR23134.
    [12] SETLUR P, SMITH G E, AHMAD F, et al. Target localization with a single sensor via multipath exploitation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 1996–2014. doi: 10.1109/TAES.2012.6237575.
    [13] SETLUR P, AMIN M, and AHMAD F. Multipath model and exploitation in through-the-wall and urban radar sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 4021–4034. doi: 10.1109/TGRS.2011.2128331.
    [14] PARK J K, PARK J H, and KIM K T. Multipath signal mitigation for indoor localization based on MIMO FMCW radar system[J]. IEEE Internet of Things Journal, 2024, 11(2): 2618–2629. doi: 10.1109/JIOT.2023.3292349.
    [15] DING Rui, WANG Zhuang, JIANG Libing, et al. Radar target localization with multipath exploitation in dense clutter environments[J]. Applied Sciences, 2023, 13(4): 2032. doi: 10.3390/app13042032.
    [16] 谭云华, 王李波, 李廉林. 一种抑制探地/穿墙成像多径虚假目标的新型概率模型: 数值研究[J]. 雷达学报, 2015, 4(5): 509–517. doi: 10.12000/JR15066.

    TAN Yunhua, WANG Libo, and LI Lianlin. A novel probability model for suppressing multipath ghosts in GPR and TWI imaging: A numerical study[J]. Journal of Radars, 2015, 4(5): 509–517. doi: 10.12000/JR15066.
    [17] AN Daoxiang, WANG Wu, and CHEN Leping. Extended subaperture imaging method for airborne low frequency Ultrawideband SAR data[J]. Sensors, 2019, 19(20): 4516. doi: 10.3390/s19204516.
    [18] 李家强, 陈德昌, 陈金立, 等. 强杂波背景下穿墙成像雷达多径虚像抑制[J]. 雷达科学与技术, 2020, 18(2): 145–150, 155. doi: 10.3969/j.issn.1672-2337.2020.02.005.

    LI Jiaqiang, CHEN Dechang, CHEN Jinli, et al. Multipath virtual image suppression of through-the-wall imaging radar under strong clutter background[J]. Radar Science and Technology, 2020, 18(2): 145–150, 155. doi: 10.3969/j.issn.1672-2337.2020.02.005.
    [19] GUO Ping, WU Fuen, TANG Shiyang, et al. Implementation method of automotive video SAR (ViSAR) based on sub-aperture spectrum fusion[J]. Remote Sensing, 2023, 15(2): 476. doi: 10.3390/rs15020476.
    [20] 申文婷, 晋良念, 刘琦. 穿墙雷达室内多径机理分析与抑制方法[J]. 雷达科学与技术, 2016, 14(6): 605–613. doi: 10.3969/j.issn.1672-2337.2016.06.009.

    SHEN Wenting, JIN Liangnian, and LIU Qi. Through-the-wall radar indoor multipath mechanism analysis and mitigation strategies[J]. Radar Science and Technology, 2016, 14(6): 605–613. doi: 10.3969/j.issn.1672-2337.2016.06.009.
    [21] 屈乐乐, 杨永席, 杨天虹. 基于二维最小相位相干因子的MIMO穿墙雷达成像方法[J]. 电讯技术, 2021, 61(12): 1534–1539. doi: 10.3969/j.issn.1001-893x.2021.12.011.

    QU Lele, YANG Yongxi, and YANG Tianhong. MIMO through-the-wall radar imaging based on 2D minimum phase coherence factor[J]. Telecommunication Engineering, 2021, 61(12): 1534–1539. doi: 10.3969/j.issn.1001-893x.2021.12.011.
    [22] 许强, 金添, 邱磊. 基于多特征结合的MIMO穿墙雷达“鬼影”抑制[J]. 现代电子技术, 2015, 38(19): 1–7. doi: 10.3969/j.issn.1004-373X.2015.19.001.

    XU Qiang, JIN Tian, and QIU Lei. “Ghost” suppression for through-the-wall radar with MIMO antenna arrays based on multi-feature combination[J]. Modern Electronics Technique, 2015, 38(19): 1–7. doi: 10.3969/j.issn.1004-373X.2015.19.001.
    [23] FENG Ruoyu, DE GREEF E, RYKUNOV M, et al. Multipath ghost recognition and joint target tracking with wall estimation for indoor MIMO radar[J]. IEEE Transactions on Radar Systems, 2024, 2: 154–164. doi: 10.1109/TRS.2024.3354509.
    [24] YANG Yiping, CHEN Chuan, JIA Yong, et al. Non-line-of-sight target detection based on dual-view observation with single-channel UWB radar[J]. Remote Sensing, 2022, 14(18): 4532. doi: 10.3390/rs14184532.
    [25] ZHANG Wei, XU Zihan, GUO Shisheng, et al. MIMO through-wall-radar down-view imaging for moving target with ground ghost suppression[J]. Digital Signal Processing, 2023, 134: 103886. doi: 10.1016/j.dsp.2022.103886.
    [26] GUO Shisheng, CHEN Jiahui, SHI Zhenpeng, et al. Graph matching based image registration for multi-view through-the-wall imaging radar[J]. IEEE Sensors Journal, 2022, 22(2): 1486–1494. doi: 10.1109/JSEN.2021.3131326.
    [27] PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/TGRS.2017.2776357.
    [28] QU Lele, WANG Chang’an, YANG Tianhong, et al. Enhanced through-the-wall radar imaging based on deep layer aggregation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4023705. doi: 10.1109/LGRS.2022.3171714.
    [29] DING Lei, ZHENG Kai, LIN Dong, et al. MP-ResNet: Multipath residual network for the semantic segmentation of high-resolution PolSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4014205. doi: 10.1109/LGRS.2021.3079925.
    [30] KANG M S and BAEK J M. SAR image reconstruction via incremental imaging with compressive sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4450–4463. doi: 10.1109/TAES.2023.3241893.
    [31] TANG Junkui, LIU Zheng, RAN Lei, et al. Enhancing forward-looking image resolution: Combining low-rank and sparsity priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5100812. doi: 10.1109/TGRS.2023.3237332.
    [32] BONFERT C, RUOPP E, and WALDSCHMIDT C. Improving SAR imaging by superpixel-based compressed sensing and backprojection processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5209212. doi: 10.1109/TGRS.2024.3385027.
    [33] LIN Yun, ZHAO Jiameng, WANG Yanping, et al. SAR multi-angle observation method for multipath suppression in enclosed spaces[J]. Remote Sensing, 2024, 16(4): 621. doi: 10.3390/rs16040621.
    [34] BERGER T and HAMRAN S E. Harmonic synthetic aperture radar processing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2066–2069. doi: 10.1109/LGRS.2015.2447517.
    [35] 邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报, 2024, 13(1): 1–22. doi: 10.12000/JR23183.

    XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数: 408
  • HTML全文浏览量: 64
  • PDF下载量: 132
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-06-23
  • 网络出版日期:  2024-07-10
  • 刊出日期:  2024-08-28

目录

/

返回文章
返回