Volume 11 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
XIANG Deliang, XU Yihao, CHENG Jianda, et al. An algorithm based on a feature interaction-based keypoint detector and sim-cspnet for SAR image registration[J]. Journal of Radars, 2022, 11(6): 1081–1097. doi: 10.12000/JR22110
Citation: XIANG Deliang, XU Yihao, CHENG Jianda, et al. An algorithm based on a feature interaction-based keypoint detector and sim-cspnet for SAR image registration[J]. Journal of Radars, 2022, 11(6): 1081–1097. doi: 10.12000/JR22110

An Algorithm Based on a Feature Interaction-based Keypoint Detector and Sim-CSPNet for SAR Image Registration

DOI: 10.12000/JR22110
Funds:  The National Natural Science Foundation of China (62171015)
More Information
  • Corresponding author: CHENG Jianda, cjd_buct@163.com
  • Received Date: 2022-06-08
  • Rev Recd Date: 2022-07-20
  • Available Online: 2022-07-22
  • Publish Date: 2022-08-03
  • Synthetic Aperture Radar (SAR) image registration has recently been one of the most challenging tasks because of speckle noise, geometric distortion and nonlinear radiation differences between SAR images. The repeatability of keypoints and the effectiveness of feature descriptors directly affect the registration accuracy of feature-based methods. In this paper, we propose a novel Feature Intersection-based (FI) keypoint detector, which contains three parallel detectors, i.e., a Phase Congruency (PC) detector, horizontal/vertical oriented gradient detectors, and a Local Coefficient of Variation (LCoV) detector. The proposed FI detector can effectively extract keypoints with high repeatabilityand greatly reduce the number of false keypoints, thus greatly reducing the computational cost of feature description and matching. We further propose the Siamese Cross Stage Partial Network (Sim-CSPNet) to rapidly extract feature descriptors containing deep and shallow features, which can obtain more correct matching point pairs than traditional synthetic shallow descriptors. Through the registration experiments on multiple sets of SAR images, the proposed method is verified to have better registration results than the three existing methods.

     

  • loading
  • [1]
    SUN Yili, LEI Lin, LI Xiao, et al. Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–21. doi: 10.1109/TGRS.2021.3053571
    [2]
    苏娟, 李彬, 王延钊. 一种基于封闭均匀区域的SAR图像配准方法[J]. 电子与信息学报, 2016, 38(12): 3282–3288. doi: 10.11999/JEIT160141

    SU Juan, LI Bin, and WANG Yanzhao. SAR image registration algorithm based on closed uniform regions[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3282–3288. doi: 10.11999/JEIT160141
    [3]
    张王菲, 陈尔学, 李增元, 等. 雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444–461. doi: 10.12000/JR20051

    ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444–461. doi: 10.12000/JR20051
    [4]
    周荣荣. 山地SAR影像配准方法研究[D]. [硕士论文], 长安大学, 2019.

    ZHOU Rongrong. Research on registration method of mountainous SAR images[D]. [Master dissertation], Chang’an University, 2019.
    [5]
    SURI S and REINARTZ P. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 939–949. doi: 10.1109/TGRS.2009.2034842
    [6]
    YOO J C and HAN T H. Fast normalized cross-correlation[J]. Circuits, Systems and Signal Processing, 2009, 28(6): 819–843. doi: 10.1007/s00034-009-9130-7
    [7]
    SHI Wei, SU Fenzhen, WANG Ruirui, et al. A visual circle based image registration algorithm for optical and SAR imagery[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2109–2112.
    [8]
    WANG Fei and VEMURI B C. Non-rigid multi-modal image registration using cross-cumulative residual entropy[J]. International Journal of Computer Vision, 2007, 74(2): 201–215. doi: 10.1007/s11263-006-0011-2
    [9]
    PAUL S and PATI U C. SAR image registration using an improved SAR-SIFT algorithm and Delaunay-triangulation-based local matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2958–2966. doi: 10.1109/JSTARS.2019.2918211
    [10]
    LOWE D G. Object recognition from local scale-invariant features[C]. Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 1150–1157.
    [11]
    MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615–1630. doi: 10.1109/TPAMI.2005.188
    [12]
    MA Wenping, WEN Zelian, WU Yue, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 3–7. doi: 10.1109/LGRS.2016.2600858
    [13]
    XIANG Yuming, WANG Feng, and YOU Hongjian. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3078–3090. doi: 10.1109/TGRS.2018.2790483
    [14]
    SCHWIND P, SURI S, REINARTZ P, et al. Applicability of the SIFT operator to geometric SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(8): 1959–1980. doi: 10.1080/01431160902927622
    [15]
    DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453–466. doi: 10.1109/TGRS.2014.2323552
    [16]
    WANG Shanhu, YOU Hongjian, and FU Kun. BFSIFT: A novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649–653. doi: 10.1109/LGRS.2011.2177437
    [17]
    FAN Jianwei, WU Yan, WANG Fan, et al. SAR image registration using phase congruency and nonlinear diffusion-based SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 562–566. doi: 10.1109/LGRS.2014.2351396
    [18]
    ELTANANY A S, AMEIN A S, and ELWAN M S. A modified corner detector for SAR images registration[J]. International Journal of Engineering Research in Africa, 2021, 53(106): 123–156. doi: 10.4028/www.scientific.net/JERA.53.123
    [19]
    YE Yuanxin, WANG Mengmeng, HAO Siyuan, et al. A novel keypoint detector combining corners and blobs for remote sensing image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 451–455. doi: 10.1109/LGRS.2020.2980620
    [20]
    ZHANG Han, NI Weiping, YAN Weidong, et al. Registration of multimodal remote sensing image based on deep fully convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 3028–3042. doi: 10.1109/JSTARS.2019.2916560
    [21]
    GE Ynchen, XIONG Zhaolong, and LAI Zuomei. Image registration of SAR and optical based on salient image sub-patches[J]. Journal of Physics:Conference Series, 2021, 1961(1): 12–17. doi: 10.1088/1742-6596/1961/1/012017
    [22]
    ZHU Hao, JIAO Licheng, MA Wenping, et al. A novel neural network for remote sensing image matching[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2853–2865. doi: 10.1109/TNNLS.2018.2888757
    [23]
    MISHCHUK A, MISHKIN D, RADENOVIC F, et al. Working hard to know your neighbor’s margins: Local descriptor learning loss[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4829–4840.
    [24]
    DU Wenliang, ZHOU Yong, and ZHAO Jiaqi, et al. Exploring the potential of unsupervised image synthesis for SAR-optical image matching[J]. IEEE Access, 2021, 9: 71022–71033. doi: 10.1109/ACCESS.2021.3079327
    [25]
    YE Famao, SU Yanfei, XIAO Hui, et al. Remote sensing image registration using convolutional neural network features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 232–236. doi: 10.1109/LGRS.2017.2781741
    [26]
    WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 1571–1580.
    [27]
    WANG Lina, SUN Mingchao, LIU Jinghong, et al. A robust algorithm based on phase congruency for optical and SAR image registration in suburban areas[J]. Remote Sensing, 2020, 12(20): 3339. doi: 10.3390/rs12203339
    [28]
    XIANG Yuming, TAO Rongshu, WANG Feng, et al. Automatic registration of optical and SAR images VIA improved phase congruency[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 931–934.
    [29]
    KOVESI P. Image features from phase congruency[J]. Videre:Journal of Computer Vision Research, 1999, 1(3): 1–26. doi: 10.1080/00268976.2015.1118568
    [30]
    XIE Hua, PIERCE L E, and ULABY F T. Statistical properties of logarithmically transformed speckle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 721–727. doi: 10.1109/TGRS.2002.1000333
    [31]
    HARRIS C and STEPHENS M. A combined corner and edge detector[C]. Alvey Vision Conference, Manchester, UK, 1988.
    [32]
    HAN Xufeng, LEUNG T, JIA Yangqing, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3279–3286.
    [33]
    DE TONE D, MALISIEWICZ T, and RABINOVICH A. Deep image homography estimation[EB/OL]. https://doi.org/10.48550/arXiv.1606.03798, 2016.
    [34]
    MERKLE N, LUO Wenjie, AUER S, et al. Exploiting deep matching and SAR data for the geo-localization accuracy improvement of optical satellite images[J]. Remote Sensing, 2017, 9(6): 586. doi: 10.3390/rs9060586
    [35]
    BALNTAS V, RIBA E, PONSA D, et al. Learning local feature descriptors with triplets and shallow convolutional neural networks[C]. British Machine Vision Conference 2016, York, UK, 2016.
    [36]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2016: 2261–2269.
    [37]
    HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://doi.org/10.48550/arXiv.1703.07737, 2017.
    [38]
    POURFARD M, HOSSEINIAN T, SAEIDI R, et al. KAZE-SAR: SAR image registration using KAZE detector and modified SURF descriptor for tackling speckle noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207612. doi: 10.1109/TGRS.2021.3084411
    [39]
    TIAN Yurun, FAN Bin, and WU Fuchao. L2-Net: Deep learning of discriminative patch descriptor in euclidean space[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honnolulu, USA, 2017: 6128–6136.
    [40]
    TIAN Yurun, YU Xin, FAN Bin, et al. SOSNet: Second order similarity regularization for local descriptor learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 11008–11017.
    [41]
    TOUZI R. A review of speckle filtering in the context of estimation theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2392–2404. doi: 10.1109/TGRS.2002.803727
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1664) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint