Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
HAN Jiaqi, TIAN Shuncheng, YI Hao, et al. High-performance microwave computational imaging system based on information metamaterials[J]. Journal of Radars, 2021, 10(2): 288–295. doi: 10.12000/JR21002
Citation: HAN Jiaqi, TIAN Shuncheng, YI Hao, et al. High-performance microwave computational imaging system based on information metamaterials[J]. Journal of Radars, 2021, 10(2): 288–295. doi: 10.12000/JR21002

High-performance Microwave Computational Imaging System Based on Information Metamaterials

DOI: 10.12000/JR21002
Funds:  The National Natural Science Foundation of China (62001342), Joint Foundation of Key Laboratory of Shanghai Jiao Tong University-Xidian University, Ministry of Education (LHJJ/2020-02), Fundamental Research Funds for the Central Universities (XJS200207)
More Information
  • Corresponding author: LI Long, lilong@mail.xidian.edu.cn
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-03-09
  • Available Online: 2021-03-29
  • Publish Date: 2021-04-28
  • In this paper, we propose a detailed architectural design, principle of operation, and modeling analysis of a high-performance microwave computational imaging system based on information metamaterials. We use the excellent electromagnetic wave manipulation capabilities of information metamaterials, combined with compressive sampling theory, and elaborate the design approaches of stray beam generation and high-performance radiation. Furthermore, we develop a numeric model for describing this imaging system and propose a high-performance frequency-diverse information metamaterial element whose band stop characteristic can cover the X-band. Based on the element, a high-performance information metamaterial lens is designed, which achieved 75% radiation efficiency, which is three times compared with existing metamaterial apertures over the imaging region. Finally, on the basis of the proposed numeric model, we compute and reconstruct ideal scattering objects using the high-performance information metamaterial lens, validating the ability of image restoration. Study on the high-performance microwave computation imaging system in this work laid the foundation for solid theory and prospective exploration, which can be applied for imaging radar, security monitoring, and medical testing.

     

  • loading
  • [1]
    PATEL V M, MAIT J N, PRATHER D W, et al. Computational millimeter wave imaging: Problems, progress, and prospects[J]. IEEE Signal Processing Magazine, 2016, 33(5): 109–118. doi: 10.1109/MSP.2016.2581206
    [2]
    MAIT J N, WIKNER D A, MIROTZNIK M S, et al. 94-GHz imager with extended depth of field[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1713–1719. doi: 10.1109/TAP.2009.2019882
    [3]
    MARTIN R, SCHUETZ C A, DILLON T E, et al. Design and performance of a distributed aperture millimeter-wave imaging system using optical upconversion[C]. SPIE 7309, Passive Millimeter-Wave Imaging Technology XII, Orlando, 2009: 730908. doi: 10.1117/12.818858.
    [4]
    HUNT J, DRISCOLL T, MROZACK A, et al. Metamaterial apertures for computational imaging[J]. Science, 2013, 339(6117): 310–313. doi: 10.1126/science.1230054
    [5]
    SLEASMAN T, BOYARSKY M, IMANI M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies[J]. Journal of the optical Society of America B, 2016, 33(6): 1098–1111. doi: 10.1364/JOSAB.33.001098
    [6]
    SLEASMAN T, IMANI M F, GOLLUB J N, et al. Dynamic metamaterial aperture for microwave imaging[J]. Applied Physics Letters, 2015, 107(20): 204104. doi: 10.1063/1.4935941
    [7]
    LIPWORTH G, ROSE A, YURDUSEVEN O, et al. Comprehensive simulation platform for a metamaterial imaging system[J]. Applied Optics, 2015, 54(31): 9343–9353. doi: 10.1364/AO.54.009343
    [8]
    刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100

    LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
    [9]
    CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B
    [10]
    LI Lianlin and CUI Tiejun. Information metamaterials–from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
    [11]
    CUI Tiejun, LI Lianlin, LIU Shuo, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
    [12]
    HAN Jiaqi, LI Long, TIAN Shuncheng, et al. Millimeter-wave imaging using 1-bit programmable metasurface: Simulation model, design, and experiment[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 52–61. doi: 10.1109/JETCAS.2020.2973466
    [13]
    LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light, Science & Applications, 2019, 8: 97. doi: 10.1038/s41377-019-0209-z
    [14]
    LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2
    [15]
    LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [16]
    CLARKE R H and BROWN J. Diffraction Theory and Antennas[M]. Chichester: Ellis Horwood, 1980: 85–86.
    [17]
    IMANI M F, GOLLUB J N, YURDUSEVEN O, et al. Review of metasurface antennas for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1860–1875. doi: 10.1109/TAP.2020.2968795
    [18]
    BIOUCAS-DIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992–3004. doi: 10.1109/TIP.2007.909319
    [19]
    LIPWORTH G, MROZACK A, HUNT J, et al. Metamaterial apertures for coherent computational imaging on the physical layer[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2013, 30(8): 1603–1612. doi: 10.1364/JOSAA.30.001603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2134) PDF downloads(267) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint