Citation: | HAN Jiaqi, TIAN Shuncheng, YI Hao, et al. High-performance microwave computational imaging system based on information metamaterials[J]. Journal of Radars, 2021, 10(2): 288–295. doi: 10.12000/JR21002 |
[1] |
PATEL V M, MAIT J N, PRATHER D W, et al. Computational millimeter wave imaging: Problems, progress, and prospects[J]. IEEE Signal Processing Magazine, 2016, 33(5): 109–118. doi: 10.1109/MSP.2016.2581206
|
[2] |
MAIT J N, WIKNER D A, MIROTZNIK M S, et al. 94-GHz imager with extended depth of field[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1713–1719. doi: 10.1109/TAP.2009.2019882
|
[3] |
MARTIN R, SCHUETZ C A, DILLON T E, et al. Design and performance of a distributed aperture millimeter-wave imaging system using optical upconversion[C]. SPIE 7309, Passive Millimeter-Wave Imaging Technology XII, Orlando, 2009: 730908. doi: 10.1117/12.818858.
|
[4] |
HUNT J, DRISCOLL T, MROZACK A, et al. Metamaterial apertures for computational imaging[J]. Science, 2013, 339(6117): 310–313. doi: 10.1126/science.1230054
|
[5] |
SLEASMAN T, BOYARSKY M, IMANI M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies[J]. Journal of the optical Society of America B, 2016, 33(6): 1098–1111. doi: 10.1364/JOSAB.33.001098
|
[6] |
SLEASMAN T, IMANI M F, GOLLUB J N, et al. Dynamic metamaterial aperture for microwave imaging[J]. Applied Physics Letters, 2015, 107(20): 204104. doi: 10.1063/1.4935941
|
[7] |
LIPWORTH G, ROSE A, YURDUSEVEN O, et al. Comprehensive simulation platform for a metamaterial imaging system[J]. Applied Optics, 2015, 54(31): 9343–9353. doi: 10.1364/AO.54.009343
|
[8] |
刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100
LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
|
[9] |
CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B
|
[10] |
LI Lianlin and CUI Tiejun. Information metamaterials–from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
|
[11] |
CUI Tiejun, LI Lianlin, LIU Shuo, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
|
[12] |
HAN Jiaqi, LI Long, TIAN Shuncheng, et al. Millimeter-wave imaging using 1-bit programmable metasurface: Simulation model, design, and experiment[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 52–61. doi: 10.1109/JETCAS.2020.2973466
|
[13] |
LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light, Science & Applications, 2019, 8: 97. doi: 10.1038/s41377-019-0209-z
|
[14] |
LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2
|
[15] |
LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
|
[16] |
CLARKE R H and BROWN J. Diffraction Theory and Antennas[M]. Chichester: Ellis Horwood, 1980: 85–86.
|
[17] |
IMANI M F, GOLLUB J N, YURDUSEVEN O, et al. Review of metasurface antennas for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1860–1875. doi: 10.1109/TAP.2020.2968795
|
[18] |
BIOUCAS-DIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992–3004. doi: 10.1109/TIP.2007.909319
|
[19] |
LIPWORTH G, MROZACK A, HUNT J, et al. Metamaterial apertures for coherent computational imaging on the physical layer[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2013, 30(8): 1603–1612. doi: 10.1364/JOSAA.30.001603
|