Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
SHUANG Ya, LI Li, WANG Zhuo, et al. Controllable manipulation of Wi-Fi signals using tunable metasurface[J]. Journal of Radars, 2021, 10(2): 313–325. DOI: 10.12000/JR21012
Citation: SHUANG Ya, LI Li, WANG Zhuo, et al. Controllable manipulation of Wi-Fi signals using tunable metasurface[J]. Journal of Radars, 2021, 10(2): 313–325. DOI: 10.12000/JR21012

Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface

doi: 10.12000/JR21012
Funds:  The National Key Research and Development Program of China (2017YFA0700203)
More Information
  • Author Bio:

    SHUANG Ya, was born in 1993 in Shaanxi, China. She received the B.S. degree from Xidian University, Xi’an, China, in 2016. She is currently pursuing the Ph.D. degree with the Department of Electronics, Peking University, Beijing, China. Her current research interests include metasurface-assisted electromagnetic imaging system, communication system based on information metamaterials, and metasurface design.E-mail: 1601111240@pku.edu.cn

    WANG Zhuo, was born in 1995. He received his B.Eng and M.Eng degree in electronic and information engineering from the Xidian University. He is currently working toward the Ph.D. degree in Peking University. His research interest is intelligent electromagnetic sensing. E-mail: 2001111254@stu.pku.edu.cn

    WEI Menglin, was born in Sep 1995 in Shanxi, China. He received his bachelor’s degree from Department of Electronics, Peking University in 2018. He joined State Key Laboratory of Advanced Optical Communication Systems and Networks as a PhD student. He has interests in microwave imaging and reconfigurable intelligent metasurface.E-mail: wmlpku@pku.edu.cn

    LI Lianlin, was born in 1980. He received his Ph.D. degree from the Institute of Electronics, Chinese Academy of Sciences in 2006. He is currently a hundred talented program professor with Peking University. His research interests are super-resolution imaging, microwave imaging, sparse signal processing, and ultrawideband radar systems.E-mail: lianlin.li@pku.edu.cn

  • Corresponding author: LI Lianlin E-mail: lianlin.li@pku.edu.cn
  • Received Date: 2021-02-19
  • Rev Recd Date: 2021-04-02
  • Available Online: 2021-04-26
  • Publish Date: 2021-04-28
  • In this paper, we propose the utilization of a programmable metasurface for flexibly manipulating ambient Wi-Fi signals. First, we propose a new and efficient optimization algorithm CWGS (Complex Weighted Gerchberg-Saxton), which is based on an electromagnetic scattering model of the metasurface. The proposed algorithm quickly redesigns the complex amplitude distribution of the Wi-Fi field bounced off the programmable metasurface to enhance the Wi-Fi signals at desired locations significantly. Second, we fabricated a large-scale programmable metasurface that operates at the 2.4 GHz frequency band. We conducted several experiments using the fabricated metasurface to verify the proposed optimization algorithm’s feasibility and effectiveness. Both the theoretical and experimental results show that the programmable metasurface can dynamically boost Wi-Fi signals at multiple locations. Besides, we experimentally verified that using the developed strategy could improve the Wi-Fi signals by 23.5 dB. The results of our work improve the usability and practicality of the programmable metasurface in real-world applications and pave the way for wireless communications, future smart homes, and other applications.

     

  • loading
  • [1]
    YANG Huanhuan, CAO Xiangyu, YANG Fan, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports, 2016, 6: 35692. doi: 10.1038/srep35692
    [2]
    LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [3]
    LAROUCHE S, TSAI Y J, TYLER T, et al. Infrared metamaterial phase holograms[J]. Nature Materials, 2012, 11(5): 450–454. doi: 10.1038/nmat3278
    [4]
    LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2
    [5]
    LI Lianlin and CUI Tiejun. Information metamaterials – from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
    [6]
    CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [7]
    WANG Yue, GUAN Chunsheng, DING Xumin, et al. Multi-focus hologram utilizing Pancharatnam-Berry phase elements based metamirror[J]. Optics Letters, 2019, 44(9): 2189–2192. doi: 10.1364/OL.44.002189
    [8]
    WANG Zehao, LIAO Dashuang, ZHANG Ting, et al. Metasurface-based focus-tunable mirror[J]. Optics Express, 2019, 27(21): 30332–30339. doi: 10.1364/OE.27.030332
    [9]
    ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430.
    [10]
    GOWDA V R, IMANI M F, SLEASMAN T, et al. Focusing microwaves in the fresnel zone with a cavity-backed holographic metasurface[J]. IEEE Access, 2018, 6: 12815–12824. doi: 10.1109/ACCESS.2018.2802379
    [11]
    ZHANG Pei, LI Long, ZHANG Xuanming, et al. Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer[J]. IEEE Access, 2019, 7: 110387–110399. doi: 10.1109/ACCESS.2019.2934135
    [12]
    YU Shixing, LIU Haixia, and LI Long. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3993–4002. doi: 10.1109/TIE.2018.2815991
    [13]
    ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [14]
    ZHANG Xu, GRAJAL J, VAZQUEZ-ROY J L, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting[J]. Nature, 2019, 566(7744): 368–372. doi: 10.1038/s41586-019-0892-1
    [15]
    WANG Guanhua, ZOU Yongpan, ZHOU Zimu, et al. We can hear you with Wi-Fi![J]. IEEE Transactions on Mobile Computing, 2016, 15(11): 2907–2920. doi: 10.1109/TMC.2016.2517630
    [16]
    ALI K, LIU A X, WANG Wei, et al. Keystroke recognition using WiFi signals[C]. The 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 2015: 90–102.
    [17]
    WU Xuangou, CHU Zhaobin, YANG Panlong, et al. TW-see: Human activity recognition through the wall with commodity Wi-Fi devices[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 306–319. doi: 10.1109/TVT.2018.2878754
    [18]
    XU Qinyi, CHEN Yan, WANG Beibei, et al. Radio biometrics: Human recognition through a wall[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1141–1155. doi: 10.1109/TIFS.2016.2647224
    [19]
    HOLL P M and REINHARD F. Holography of Wi-Fi radiation[J]. Physical Review Letters, 2017, 118(18): 183901. doi: 10.1103/PhysRevLett.118.183901
    [20]
    ZHONG Wei, HE W K, WANG Longgang, et al. Through-the-wall imaging using Wi-Fi signals[C]. The 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–3.
    [21]
    LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8: 97.
    [22]
    TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019, 55(7): 417–420. doi: 10.1049/el.2019.0400
    [23]
    GOWDA V R, YURDUSEVEN O, LIPWORTH G, et al. Wireless power transfer in the radiative near field[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1865–1868. doi: 10.1109/LAWP.2016.2542138
    [24]
    DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi: 10.1109/ACCESS.2020.2977772
    [25]
    RATNI B, DE LUSTRAC A, PIAU G P, et al. Reconfigurable meta-mirror for wavefronts control: Applications to microwave antennas[J]. Optics Express, 2018, 26(3): 2613–2624. doi: 10.1364/OE.26.002613
    [26]
    XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503
    [27]
    WANG Di, YIN Lizheng, HUANG Tiejun, et al. Design of a 1 bit broadband space-time-coding digital metasurface element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 611–615. doi: 10.1109/LAWP.2020.2973424
    [28]
    YANG Xue, XU Shenheng, YANG Fan, et al. A novel 2-bit reconfigurable reflectarray element for both linear and circular polarizations[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2083–2084.
    [29]
    KAMODA H, IWASAKI T, TSUMOCHI J, et al. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(7): 2524–2531. doi: 10.1109/TAP.2011.2152338
    [30]
    LI Long, YANG Yang, and LIANG Changhong. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics, 2011, 110(6): 063702. doi: 10.1063/1.3638118
    [31]
    YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-Band[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703
    [32]
    WANG Ke, ZHAO Jie, CHENG Qiang, et al. Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm[J]. Scientific Reports, 2014, 4: 5935.
    [33]
    GUAN Chunsheng, WANG Zhuochao, DING Xumin, et al. Coding Huygens’ metasurface for enhanced quality holographic imaging[J]. Optics Express, 2019, 27(5): 7108–7119. doi: 10.1364/OE.27.007108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1774) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint