| Citation: | SHUANG Ya, LI Li, WANG Zhuo, et al. Controllable manipulation of Wi-Fi signals using tunable metasurface[J]. Journal of Radars, 2021, 10(2): 313–325. DOI: 10.12000/JR21012 | 
	                | [1] | 
					 YANG Huanhuan, CAO Xiangyu, YANG Fan, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports, 2016, 6: 35692. doi:  10.1038/srep35692 
						
					 | 
			
| [2] | 
					 LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi:  10.1038/s41467-017-00164-9 
						
					 | 
			
| [3] | 
					 LAROUCHE S, TSAI Y J, TYLER T, et al. Infrared metamaterial phase holograms[J]. Nature Materials, 2012, 11(5): 450–454. doi:  10.1038/nmat3278 
						
					 | 
			
| [4] | 
					 LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi:  10.1038/s41467-019-09103-2 
						
					 | 
			
| [5] | 
					 LI Lianlin and CUI Tiejun. Information metamaterials – from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi:  10.1515/nanoph-2019-0006 
						
					 | 
			
| [6] | 
					 CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi:  10.1002/adma.201606422 
						
					 | 
			
| [7] | 
					 WANG Yue, GUAN Chunsheng, DING Xumin, et al. Multi-focus hologram utilizing Pancharatnam-Berry phase elements based metamirror[J]. Optics Letters, 2019, 44(9): 2189–2192. doi:  10.1364/OL.44.002189 
						
					 | 
			
| [8] | 
					 WANG Zehao, LIAO Dashuang, ZHANG Ting, et al. Metasurface-based focus-tunable mirror[J]. Optics Express, 2019, 27(21): 30332–30339. doi:  10.1364/OE.27.030332 
						
					 | 
			
| [9] | 
					 ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. 
						
					 | 
			
| [10] | 
					 GOWDA V R, IMANI M F, SLEASMAN T, et al. Focusing microwaves in the fresnel zone with a cavity-backed holographic metasurface[J]. IEEE Access, 2018, 6: 12815–12824. doi:  10.1109/ACCESS.2018.2802379 
						
					 | 
			
| [11] | 
					 ZHANG Pei, LI Long, ZHANG Xuanming, et al. Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer[J]. IEEE Access, 2019, 7: 110387–110399. doi:  10.1109/ACCESS.2019.2934135 
						
					 | 
			
| [12] | 
					 YU Shixing, LIU Haixia, and LI Long. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3993–4002. doi:  10.1109/TIE.2018.2815991 
						
					 | 
			
| [13] | 
					 ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi:  10.1093/nsr/nwy135 
						
					 | 
			
| [14] | 
					 ZHANG Xu, GRAJAL J, VAZQUEZ-ROY J L, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting[J]. Nature, 2019, 566(7744): 368–372. doi:  10.1038/s41586-019-0892-1 
						
					 | 
			
| [15] | 
					 WANG Guanhua, ZOU Yongpan, ZHOU Zimu, et al. We can hear you with Wi-Fi![J]. IEEE Transactions on Mobile Computing, 2016, 15(11): 2907–2920. doi:  10.1109/TMC.2016.2517630 
						
					 | 
			
| [16] | 
					 ALI K, LIU A X, WANG Wei, et al. Keystroke recognition using WiFi signals[C]. The 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 2015: 90–102. 
						
					 | 
			
| [17] | 
					 WU Xuangou, CHU Zhaobin, YANG Panlong, et al. TW-see: Human activity recognition through the wall with commodity Wi-Fi devices[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 306–319. doi:  10.1109/TVT.2018.2878754 
						
					 | 
			
| [18] | 
					 XU Qinyi, CHEN Yan, WANG Beibei, et al. Radio biometrics: Human recognition through a wall[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1141–1155. doi:  10.1109/TIFS.2016.2647224 
						
					 | 
			
| [19] | 
					 HOLL P M and REINHARD F. Holography of Wi-Fi radiation[J]. Physical Review Letters, 2017, 118(18): 183901. doi:  10.1103/PhysRevLett.118.183901 
						
					 | 
			
| [20] | 
					 ZHONG Wei, HE W K, WANG Longgang, et al. Through-the-wall imaging using Wi-Fi signals[C]. The 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–3. 
						
					 | 
			
| [21] | 
					 LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8: 97. 
						
					 | 
			
| [22] | 
					 TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019, 55(7): 417–420. doi:  10.1049/el.2019.0400 
						
					 | 
			
| [23] | 
					 GOWDA V R, YURDUSEVEN O, LIPWORTH G, et al. Wireless power transfer in the radiative near field[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1865–1868. doi:  10.1109/LAWP.2016.2542138 
						
					 | 
			
| [24] | 
					 DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi:  10.1109/ACCESS.2020.2977772 
						
					 | 
			
| [25] | 
					 RATNI B, DE LUSTRAC A, PIAU G P, et al. Reconfigurable meta-mirror for wavefronts control: Applications to microwave antennas[J]. Optics Express, 2018, 26(3): 2613–2624. doi:  10.1364/OE.26.002613 
						
					 | 
			
| [26] | 
					 XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi:  10.1038/srep27503 
						
					 | 
			
| [27] | 
					 WANG Di, YIN Lizheng, HUANG Tiejun, et al. Design of a 1 bit broadband space-time-coding digital metasurface element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 611–615. doi:  10.1109/LAWP.2020.2973424 
						
					 | 
			
| [28] | 
					 YANG Xue, XU Shenheng, YANG Fan, et al. A novel 2-bit reconfigurable reflectarray element for both linear and circular polarizations[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2083–2084. 
						
					 | 
			
| [29] | 
					 KAMODA H, IWASAKI T, TSUMOCHI J, et al. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(7): 2524–2531. doi:  10.1109/TAP.2011.2152338 
						
					 | 
			
| [30] | 
					 LI Long, YANG Yang, and LIANG Changhong. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics, 2011, 110(6): 063702. doi:  10.1063/1.3638118 
						
					 | 
			
| [31] | 
					 YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-Band[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3024–3032. doi:  10.1109/TAP.2017.2694703 
						
					 | 
			
| [32] | 
					 WANG Ke, ZHAO Jie, CHENG Qiang, et al. Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm[J]. Scientific Reports, 2014, 4: 5935. 
						
					 | 
			
| [33] | 
					 GUAN Chunsheng, WANG Zhuochao, DING Xumin, et al. Coding Huygens’ metasurface for enhanced quality holographic imaging[J]. Optics Express, 2019, 27(5): 7108–7119. doi:  10.1364/OE.27.007108 
						
					 |