Citation: | YUE Yaxing, LI Tianyu, ZHOU Chengwei, et al. Research progress and prospect of sparse diversely polarized array design[J]. Journal of Radars, 2023, 12(2): 312–331. doi: 10.12000/JR22206 |
[1] |
HE Jin, WANG Yijing, SHU Ting, et al. Polarization, angle, and delay estimation for tri-polarized systems in multipath environments[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 5828–5841. doi: 10.1109/TWC.2022.3143834
|
[2] |
ZHU Dalin, CHOI J, and HEATH R W. Two-dimensional AoD and AoA acquisition for wideband millimeter-wave systems with dual-polarized MIMO[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 7890–7905. doi: 10.1109/TWC.2017.2754369
|
[3] |
YUE Yaxing, XU Yougen, LIU Zhiwen, et al. Parameter estimation of coexisted circular and strictly noncircular sources using diversely polarized antennas[J]. IEEE Communications Letters, 2018, 22(9): 1822–1825. doi: 10.1109/LCOMM.2018.2849402
|
[4] |
WANG Zhanling, YIN Jiapeng, PANG Chen, et al. An adaptive direction-dependent polarization state configuration method for high isolation in polarimetric phased array radar[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3257–3272. doi: 10.1109/TAP.2020.3037704
|
[5] |
FRIEDLANDER B. Polarization sensitivity of antenna arrays[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 234–244. doi: 10.1109/TSP.2018.2880708
|
[6] |
SHEN Shanpu, ZHANG Yujie, CHIU C Y, et al. A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9215–9226. doi: 10.1109/tie.2019.2952819
|
[7] |
庄钊文, 徐振海, 肖顺平, 等. 极化敏感阵列信号处理[M]. 北京: 国防工业出版社, 2005.
ZHUANG Zhaowen, XU Zhenhai, XIAO Shunping, et al. Signal Processing of Polarization Sensitive Array[M]. Beijing: National Defense Industry Press, 2005.
|
[8] |
ZHAO Kang, LIU Zhiwen, SHI Shuli, et al. Polarimetric clutter nulling space-time adaptive processing[C]. The 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 2020: 331–335.
|
[9] |
KHAN S and WONG K T. A six-component vector sensor comprising electrically long dipoles and large loops - To simultaneously estimate incident sources’ directions-of-arrival and polarizations[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6355–6363. doi: 10.1109/TAP.2020.2988980
|
[10] |
PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
|
[11] |
LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549–5563. doi: 10.1109/TSP.2017.2736493
|
[12] |
ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012
|
[13] |
ZHENG Wang, ZHANG Xiaofei, WANG Yunfei, et al. Padded coprime arrays for improved DOA estimation: Exploiting hole representation and filling strategies[J]. IEEE Transactions on Signal Processing, 2020, 68: 4597–4611. doi: 10.1109/TSP.2020.3013389
|
[14] |
ZHENG Zhi, WANG Wenqin, KONG Yangyang, et al. MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect[J]. IEEE Transactions on Signal Processing, 2019, 67(7): 1728–1741. doi: 10.1109/TSP.2019.2897954
|
[15] |
SHEN Qing, LIU Wei, CUI Wei, et al. Simplified and enhanced multiple level nested arrays exploiting high-order difference co-arrays[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3502–3515. doi: 10.1109/TSP.2019.2914887
|
[16] |
FAN Xing, ZHOU Chengwei, GU Yujie, et al. Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 2017: 1–5.
|
[17] |
ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. Coarray interpolation-based coprime array DOA estimation via covariance matrix reconstruction[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 2018: 3479–3483.
|
[18] |
YUE Yaxing, ZHANG Zongyu, ZHOU Chengwei, et al. Closed-form two-dimensional DOA and polarization joint estimation using parallel non-collocated sparse COLD arrays[C]. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop, Trondheim, Norway, 2022: 16–20.
|
[19] |
TANG Mang, SHU Ting, HE Jin, et al. Direction-finding and polarization estimation with spread orthogonal loop and dipole arrays[J]. Circuits, System, and Signal Processing, 2021, 40(12): 6401–6415. doi: 10.1007/s00034-021-01776-9
|
[20] |
YUE Yaxing, XU Yougen, and LIU Zhiwen. Manifold separation and polarimetric element space based parameter estimation for polarimetric monostatic MIMO radar[C]. CIE Radar Conference, Haikou, China, 2021: 573–577.
|
[21] |
SI Weijian, ZENG Fuhong, QU Zhiyu, et al. Two-dimensional DOA estimation via a novel sparse array consisting of coprime and nested subarrays[J]. IEEE Communications Letters, 2020, 24(6): 1266–1270. doi: 10.1109/LCOMM.2020.2979066
|
[22] |
YANG Yunlong, HOU Yuguan, MAO Xingpeng, et al. Stokes parameters and DOA estimation for nested polarization sensitive array in unknown nonuniform noise environment[J]. Signal Processing, 2020, 175: 107630. doi: 10.1016/j.sigpro.2020.107630
|
[23] |
HAN Keyong and NEHORAI A. Nested vector-sensor array processing via tensor modeling[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2542–2553. doi: 10.1109/TSP.2014.2314437
|
[24] |
SHI Zhiguo, ZHOU Chengwei, GU Yujie, et al. Source estimation using coprime array: A sparse reconstruction perspective[J]. IEEE Sensors Journal, 2017, 17(3): 755–765. doi: 10.1109/JSEN.2016.2637059
|
[25] |
周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068
ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-Arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068
|
[26] |
ZHENG Hang, SHI Zhiguo, ZHOU Chengwei, et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28: 1545–1549. doi: 10.1109/LSP.2021.3099074
|
[27] |
SHEN Yifan, ZHOU Chengwei, GU Yujie, et al. Vandermonde decomposition of coprime coarray covariance matrix for DOA estimation[C]. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–5.
|
[28] |
YANG Minglei, DING Jin, CHEN Baixiao, et al. A multiscale sparse array of spatially spread electromagnetic-vector-sensors for direction finding and polarization estimation[J]. IEEE Access, 2018,, 6: 9807–9818. doi: 10.1109/ACCESS.2018.2799905
|
[29] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[30] |
ZHOU Xingyue, YAN Yunde, and DUAN Rui. Deep learning based on striation images for underwater and surface target classification[J]. IEEE Signal Processing Letters, 2019, 26(9): 1378–1382. doi: 10.1109/LSP.2019.2919102
|
[31] |
ZHOU Xingyue, YAN Yonghong, and YANG Kunde. A multi-feature compression and fusion strategy of vertical self-contained hydrophone array[J]. IEEE Sensors Journal, 2021, 21(21): 24349–24358. doi: 10.1109/JSEN.2021.3112164
|
[32] |
朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188
ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188
|
[33] |
TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383
|
[34] |
于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
YU Huicun, CAO Xiangyu, GAO Jun, et al. Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
|
[35] |
YU Huicun, CAO Xiangyu, GAO Jun, et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373
|
[36] |
MOLERO C, PALOMARES-CABALLERO Á, ALEX-AMOR A, et al. Metamaterial-based reconfigurable intelligent surface: 3D meta-atoms controlled by graphene structures[J]. IEEE Communications Magazine, 2021, 59(6): 42–48. doi: 10.1109/MCOM.001.2001161
|
[37] |
WONG K T. Direction finding/polarization estimation-dipole and/or loop triad(s)[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 679–684. doi: 10.1109/7.937478
|
[38] |
WONG K T and YUAN Xin. “Vector cross-product direction-finding” with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 160–171. doi: 10.1109/TSP.2010.2084085
|
[39] |
YUE Yaxing, XU Yougen, ZHUANG Junpeng, et al. Mutual coupling self-calibration for parameter estimation with vector antennas[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–5.
|
[40] |
YUE Yaxing, XU Yougen, and LIU Zhiwen. Closed-form two-dimensional DOA and polarization estimation of coexisted circular and noncircular signals[C]. CIE Radar Conference, Haikou, China, 2021: 1556–1560.
|
[41] |
GONG Xiaofeng, JIANG Jiacheng, LI Hui, et al. Spatially spread dipole/loop quint for vector-cross-product-based direction finding and polarisation estimation[J]. IET Signal Processing, 2018, 12(5): 636–642. doi: 10.1049/iet-spr.2017.0232
|
[42] |
ZOLTOWSKI M D and WONG K T. ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2195–2204. doi: 10.1109/78.852000
|
[43] |
司伟建, 周炯赛, 曲志昱. 稀疏极化敏感阵列的波达方向和极化参数联合估计[J]. 电子与信息学报, 2016, 38(5): 1129–1134. doi: 10.11999/JEIT150840
SI Jianwei, ZHOU Jiongsai, and QU Zhiyu. Joint DOA and polarization estimation with sparsely distributed polarization sensitive array[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1129–1134. doi: 10.11999/JEIT150840
|
[44] |
马慧慧, 陶海红. 稀疏拉伸式L型极化敏感阵列的二维波达方向和极化参数联合估计[J]. 电子与信息学报, 2020, 42(4): 902–909. doi: 10.11999/JEIT190208
MA Huihui and TAO Haihong. Joint 2D-DOA and polarization parameter estimation with sparsely stretched l-shaped polarization sensitive array[J]. Journal of Electronics &Information Technology, 2020, 42(4): 902–909. doi: 10.11999/JEIT190208
|
[45] |
ZHENG Guimei. Two-dimensional DOA estimation for polarization sensitive array consisted of spatially spread crossed-dipole[J]. IEEE Sensors Journal, 2018, 18(12): 5014–5023. doi: 10.1109/JSEN.2018.2820168
|
[46] |
JOSHI S and BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451–462. doi: 10.1109/TSP.2008.2007095
|
[47] |
TOHIDI E, COUTINO M, CHEPURI S P, et al. Sparse antenna and pulse placement for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 579–593. doi: 10.1109/TSP.2018.2881656
|
[48] |
WANG Xiangrong, ABOUTANIOS E, and AMIN M G. Adaptive array thinning for enhanced DOA estimation[J]. IEEE Signal Processing Letters, 2015, 22(7): 799–803. doi: 10.1109/LSP.2014.2370632
|
[49] |
ELBIR A M and MISHRA K V. Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 1677–1688. doi: 10.1109/TWC.2019.2956146
|
[50] |
ELBIR A M and MISHRA K V. Deep learning design for joint antenna selection and hybrid beamforming in massive MIMO[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019: 1585–1586.
|
[51] |
ZHANG Shunbo, ZHANG Shun, GAO Feifei, et al. Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication[J]. IEEE Transactions on Communications, 2021, 69(10): 6691–6705. doi: 10.1109/TCOMM.2021.3097726
|
[52] |
WANDALE S and ICHIGE K. Design of sparse arrays via deep learning for enhanced DOA estimation[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 17. doi: 10.1186/S13634-021-00727-5
|
[53] |
BLISS D W and FORSYTHE K W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution[C]. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 54–59.
|
[54] |
JIN Ming, LIAO Guisheng, and LI Jun. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing, 2009, 89(2): 244–251. doi: 10.1016/j.sigpro.2008.08.003
|
[55] |
ZHANG Xiaofei, XU Lingyun, XU Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161–1163. doi: 10.1109/LCOMM.2010.102610.101581
|
[56] |
YUE Yaxing, XU Yougen, and LIU Zhiwen. Two-dimensional direction-of-arrival estimation in monostatic MIMO radar[C]. 2021 4th International Conference on Information Communication and Signal Processing, Shanghai, China, 2021: 60–64.
|
[57] |
HASSANIEN A and VOROBYOV S A. Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2669–2682. doi: 10.1109/TSP.2011.2125960
|
[58] |
BENCHEIKH M L, WANG Yide, and HE Hongyang. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(9): 2723–2730. doi: 10.1016/j.sigpro.2010.03.023
|
[59] |
LI Jianfeng, HE Yi, HE Lang, et al. DOD and DOA estimation for MIMO radar based on combined MUSIC and sparse Bayesian learning[C]. 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), Nanjing, China, 2019: 1–2.
|
[60] |
BAIDOO E, HU Jurong, ZENG Bao, et al. Joint DOD and DOA estimation using tensor reconstruction based sparse representation approach for bistatic MIMO radar with unknown noise effect[J]. Signal Processing, 2021, 182: 107912. doi: 10.1016/j.sigpro.2020.107912
|
[61] |
LIU Yang, CHAI Jin, ZHANG Yinghui, et al. Low-complexity neural network based DOA estimation for wideband signals in massive MIMO systems[J]. AEU-International Journal of Electronics and Communications, 2021, 138: 153853. doi: 10.1016/J.AEUE.2021.153853
|
[62] |
MOLAEI A M, DEL HOUGNE P, FUSCO V, et al. Efficient joint estimation of DOA, range and reflectivity in near-field by using mixed-order statistics and a symmetric MIMO array[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2824–2842. doi: 10.1109/TVT.2021.3138251
|
[63] |
CHEN Chunyang and VAIDYANATHAN P P. Minimum redundancy MIMO radars[C]. 2008 IEEE International Symposium on Circuits and Systems, Seattle, USA, 2008: 45–48.
|
[64] |
HUANG Yan, LIAO Guisheng, LI Jun, et al. Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation[J]. Multidimensional Systems and Signal Processing, 2017, 28(4): 1183–1202. doi: 10.1007/s11045-016-0387-2
|
[65] |
ZHANG Yule, HU Guoping, ZHOU Hao, et al. DOA estimation of a novel generalized nested MIMO radar with high degrees of freedom and hole-free difference coarray[J]. Mathematical Problems in Engineering, 2021, 2021: 6622154. doi: 10.1155/2021/6622154
|
[66] |
YANG Minglei, SUN Lei, YUAN Xin, et al. A new nested MIMO array with increased degrees of freedom and hole-free difference coarray[J]. IEEE Signal Processing Letters, 2018, 25(1): 40–44. doi: 10.1109/lsp.2017.2766294
|
[67] |
LIU Donglei, ZHAO Yongbo, and DONG Shuxian. A novel co-prime MIMO radar model for DOA estimation[J]. Signal Processing, 2022, 199: 108606. doi: 10.1016/j.sigpro.2022.108606
|
[68] |
ZHANG Fei, JI Chuantang, ZHANG Zijing, et al. Non-circular signal DOA estimation based on coprime array MIMO radar[J]. EURASIP Journal on Advances in Signal Processing, 2021(1): 99. doi: 10.1186/S13634-021-00806-7
|
[69] |
SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437
|
[70] |
WEN Fangqing, SHI Junpeng, and ZHANG Zijing. Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1626–1638. doi: 10.1109/TVT.2019.2957511
|
[71] |
DING Xueke, HU Ying, LIU Changming, et al. Coherent targets parameter estimation for EVS-MIMO radar[J]. Remote Sensing, 2022, 14(17): 4331. doi: 10.3390/rs14174331
|
[72] |
PONNUSAMY P, SUBRAMANIAM K, and CHINTAGUNTA S. Computationally efficient method for joint DOD and DOA estimation of coherent targets in MIMO radar[J]. Signal Processing, 2019, 165: 262–267. doi: 10.1016/j.sigpro.2019.07.015
|
[73] |
WANG Xianpeng, HUANG Mengxing, and WAN Liangtian. Joint 2D-DOD and 2D-DOA estimation for coprime EMVS–MIMO radar[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2950–2966. doi: 10.1007/s00034-020-01605-5
|
[74] |
YANG Yongqiang, RUAN Ningjun, HUANG Guanjun, et al. A propagator method for bistatic coprime EMVS-MIMO radar[J]. Mathematical Problems in Engineering, 2021, 2021: 9954573. doi: 10.1155/2021/9954573
|
[75] |
谢前朋, 潘小义, 陈吉源, 等. 基于新型阵列的双基地电磁矢量传感器MIMO雷达高分辨角度参数估计[J]. 电子与信息学报, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130
XIE Qianpeng, PAN Xiaoyi, CHEN Jiyuan, et al. High resolution angle parameter estimation for bistatic EMVS-MIMO radar based on a new designed array[J]. Journal of Electronics &Information Technology, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130
|
[76] |
赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001
ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001
|
[77] |
ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Range-dependent beamforming using element level waveform diversity[C]. 2006 International Waveform Diversity & Design Conference, Lihue, USA, 2006: 1–6.
|
[78] |
ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 3.
|
[79] |
WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase[P]. US 7319427, 2008.
|
[80] |
WICKS M C and ANTONIK P. Method and apparatus for a frequency diverse array[P]. US 7511665, 2009.
|
[81] |
ANTONIK P. An investigation of a frequency diverse array[D]. [Ph. D. dissertation], University College London, 2009.
|
[82] |
BASIT A, WANG Wenqin, NUSENU S Y, et al. FDA based QSM for mmwave wireless communications: Frequency diverse transmitter and reduced complexity receiver[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4571–4584. doi: 10.1109/TWC.2021.3060512
|
[83] |
NUSENU S Y, SHAO Huaizong, PAN Ye, et al. Directional modulation with precise legitimate location using time-modulation retrodirective frequency diversity array for secure IoT communications[J]. IEEE Systems Journal, 2021, 15(1): 1109–1119. doi: 10.1109/JSYST.2020.3010787
|
[84] |
SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
|
[85] |
许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023
XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023
|
[86] |
SUN Yan, ZHENG Zhi, WANG Wenqin, et al. DOA estimation and tracking for FDA-MIMO radar signal[J]. Digital Signal Processing, 2020, 106: 102858. doi: 10.1016/j.dsp.2020.102858
|
[87] |
XU Tengxian, WANG Xianpeng, HUANG Mengxing, et al. Tensor-based reduced-dimension music method for parameter estimation in monostatic FDA-MIMO radar[J]. Remote Sensing, 2021, 13(18): 3772. doi: 10.3390/rs13183772
|
[88] |
CUI Can, XU Jian, GUI Ronghua, et al. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar[J]. IEEE Access, 2018, 6: 15431–15445. doi: 10.1109/ACCESS.2018.2816780
|
[89] |
LIU Yibin, WANG Chunyang, ZHENG Guimei, et al. Joint range and angle estimation of low-elevation target with bistatic meter-wave FDA-MIMO radar[J]. Digital Signal Processing, 2022, 127: 103556. doi: 10.1016/j.dsp.2022.103556
|
[90] |
王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029
WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029
|
[91] |
陈阳, 田波, 王春阳, 等. FDA-MIMO抗干扰技术进展及前景展望[J]. 电光与控制, 2022, 29(8): 65–72. doi: 10.3969/j.issn.1671-637X.2022.08.012
CHEN Yang, TIAN Bo, WANG Chunyang, et al. Progress and prospect of FDA-MIMO anti-jamming technology[J]. Electronics Optics Control, 2022, 29(8): 65–72. doi: 10.3969/j.issn.1671-637X.2022.08.012
|
[92] |
LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689
|
[93] |
兰岚, 廖桂生, 许京伟, 等. FDA-MIMO雷达主瓣距离欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06
LAN Lan, LIAO Guisheng, XU Jingwei, et al. Main-beam range deceptive jamming suppression approach with FDA-MIMO radar[J]. Systems Engineering and Electronics, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06
|
[94] |
高霞, 全英汇, 李亚超, 等. 基于BSS的FDA-MIMO雷达主瓣欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(9): 1927–1934. doi: 10.3969/j.issn.1001-506X.2020.09.07
GAO Xia, QUAN Yinghui, LI Yachao, et al. Main-lobe deceptive jamming suppression with FDA-MIMO radar based on BSS[J]. Systems Engineering and Electronics, 2020, 42(9): 1927–1934. doi: 10.3969/j.issn.1001-506X.2020.09.07
|
[95] |
许京伟, 廖桂生, 张玉洪, 等. 波形分集阵雷达抗欺骗式干扰技术[J]. 电子学报, 2019, 47(3): 545–551. doi: 10.3969/j.issn.0372-2112.2019.03.005
XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. On anti-jamming technique with waveform diverse array radar[J]. Acta Electronica Sinica, 2019, 47(3): 545–551. doi: 10.3969/j.issn.0372-2112.2019.03.005
|
[96] |
陈浩, 李荣锋, 戴凌燕, 等. 基于 FVE 法的 FDA-MIMO 雷达主瓣密集假目标干扰抑制[J]. 空军预警学院学报, 2018, 32(6): 397–401. doi: 10.3969/j.issn.2095-5839.2018.06.002
CHEN Hao, LI Rongfeng, DAI Lingyan, et al. FDA-MIMO radar mainlobe dense false target jamming suppression based on feature vector eliminating[J]. Journal of Air Force Early Warning Academy, 2018, 32(6): 397–401. doi: 10.3969/j.issn.2095-5839.2018.06.002
|
[97] |
QIN Si, ZHANG Y D, AMIN M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 321–335. doi: 10.1109/JSTSP.2016.2627184
|
[98] |
CAO Ruisong, LIU Shengheng, MAO Zihuan, et al. Doubly-Toeplitz-based interpolation for joint DOA-range estimation using coprime FDA[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–6.
|
[99] |
SEDIGHI S, SHANKAR B, MISHRA K V, et al. Optimum design for sparse FDA-MIMO automotive radar[C]. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 913–918.
|
[100] |
LI Binbin, BAI Weixiong, and ZHENG Guimei. Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar[J]. IEEE Access, 2018, 6: 36376–36382. doi: 10.1109/ACCESS.2018.2844948
|
[101] |
LI Binbin, CHEN Hui, ZHENG Guimei, et al. Joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar[C]. International Conference on Frontiers of Electronics, Information and Computation Technologies, Changsha, China, 2021: 22.
|
[102] |
YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
|
[103] |
杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137
YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
|
[104] |
YANG Wanchen, CHEN Si, CHE Wenquan, et al. Compact high-gain metasurface antenna arrays based on higher-mode SIW cavities[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4918–4923. doi: 10.1109/TAP.2018.2851659
|
[105] |
NIE Niansheng, YANG Xuesong, CHEN Zhining, et al. A low-profile wideband hybrid metasurface antenna array for 5G and WiFi systems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 665–671. doi: 10.1109/TAP.2019.2940367
|
[106] |
YANG Wanchen, MENG Qian, CHE Wenquan, et al. Low-profile wideband dual-circularly polarized metasurface antenna array with large beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1613–1616. doi: 10.1109/LAWP.2018.2857625
|
[107] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
|
[108] |
YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band[J]. IEEE transactions on antennas and propagation, 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703
|
[109] |
BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192
|
[110] |
GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
|
[111] |
DI Boya, ZHANG Hongliang, SONG Lingyang, et al. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1809–1822. doi: 10.1109/JSAC.2020.3000813
|
[112] |
LI Wenting, GAO S, CAI Yuanming, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4470–4477. doi: 10.1109/TAP.2017.2730240
|
[113] |
MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212
|
[114] |
CUI Jianhua, HUANG Cheng, PAN Wenbo, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J]. Scientific Reports, 2016, 6(1): 30771. doi: 10.1038/srep30771
|
[115] |
TAO Zui, WAN Xiang, PAN Baicao, et al. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface[J]. Applied Physics Letters, 2017, 110(12): 121901. doi: 10.1063/1.4979033
|
[116] |
ZHANG Meng, ZHANG W, LIU A Q, et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface[J]. Scientific Reports, 2017, 7(1): 12068. doi: 10.1038/s41598-017-11953-z
|
[117] |
ELMOSSALLAMY M A, ZHANG Hongliang, SONG Lingyang, et al. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 990–1002. doi: 10.1109/TCCN.2020.2992604
|
[118] |
Alexandropoulos G C, Shlezinger N, and Del Hougne P. Reconfigurable intelligent surfaces for rich scattering wireless communications: Recent experiments, challenges, and opportunities[J]. IEEE Communications Magazine, 2021, 59(6): 28–34. doi: 10.1109/MCOM.001.2001117
|
[119] |
HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
|
[120] |
BJÖRNSON E, ÖZDOGAN Ö, and LARSSON E G. Reconfigurable intelligent surfaces: Three myths and two critical questions[J]. IEEE Communications Magazine, 2020, 58(12): 90–96. doi: 10.1109/MCOM.001.2000407
|
[121] |
DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211
|
[122] |
HU Xiaoling, ZHONG Caijun, ZHANG Yu, et al. Location information aided multiple intelligent reflecting surface systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7948–7962. doi: 10.1109/TCOMM.2020.3020577
|
[123] |
LIN Shaoe, ZHENG Beixiong, ALEXANDROPOULOS G C, et al. Adaptive transmission for reconfigurable intelligent surface-assisted OFDM wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2653–2665. doi: 10.1109/JSAC.2020.3007038
|
[124] |
ZENG Ming, LI Xingwang, LI Gen, et al. Sum rate maximization for IRS-assisted uplink NOMA[J]. IEEE Communications Letters, 2021, 25(1): 234–238. doi: 10.1109/LCOMM.2020.3025978
|
[125] |
ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632–2636. doi: 10.1109/LCOMM.2020.3009158
|
[126] |
WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
|
[127] |
TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055
|
[128] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
|
[129] |
CHEN Peng, CHEN Zhimin, ZHENG Beixiong, et al. Efficient DOA estimation method for reconfigurable intelligent surfaces aided UAV swarm[J]. IEEE Transactions on Signal Processing, 2022, 70: 743–755. doi: 10.1109/TSP.2022.3146791
|
[130] |
ZHANG Jiliang, GLAZUNOV A A, YANG Wenfei, et al. Fundamental wireless performance of a building[J]. IEEE Wireless Communications, 2022, 29(1): 186–193. doi: 10.1109/MWC.121.2100244
|
[131] |
ZHANG Jiliang, GLAZUNOV A A, and ZHANG Jie. Wireless performance evaluation of building layouts: Closed-form computation of figures of merit[J]. IEEE Transactions on Communications, 2021, 69(7): 4890–4906. doi: 10.1109/TCOMM.2021.3074546
|
[132] |
ANDREWS J G, ZHANG Xinchen, DURGIN G D, et al. Are we approaching the fundamental limits of wireless network densification?[J]. IEEE Communications Magazine, 2016, 54(10): 184–190. doi: 10.1109/MCOM.2016.7588290
|
[133] |
CALABUIG D, BARMPOUNAKIS S, GIMENEZ S, et al. Resource and mobility management in the network layer of 5G cellular ultra-dense networks[J]. IEEE Communications Magazine, 2017, 55(6): 162–169. doi: 10.1109/MCOM.2017.1600293
|
[134] |
BUSARI S A, HUQ K M S, MUMTAZ S, et al. Millimeter-wave massive MIMO communication for future wireless systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 836–869. doi: 10.1109/COMST.2017.2787460
|
[135] |
ZENG Shuhao, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[J]. IEEE Communications Letters, 2021, 25(1): 269–273. doi: 10.1109/LCOMM.2020.3025345
|
[136] |
PENA D, FEICK R, HRISTOV H D, et al. Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(1): 31–39. doi: 10.1109/TAP.2003.808539
|
[137] |
ZHANG Jiliang, LIAO Xi, GLAZUNOV A A, et al. Two-ray reflection resolution algorithm for planar material electromagnetic property measurement at the millimeter-wave bands[J]. Radio Science, 2020, 55(3): e2019RS006944. doi: 10.1029/2019RS006944
|
[138] |
ZHOU Yang, SHAO Yu, ZHANG Jiliang, et al. Wireless performance evaluation of building materials integrated with antenna arrays[J]. IEEE Communications Letters, 2022, 26(4): 942–946. doi: 10.1109/LCOMM.2022.3141390
|