Volume 8 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
HAN Jinwang, ZHANG Zijing, LIU Jun, et al. Adaptive Bayesian detection for MIMO radar in Gaussian clutter[J]. Journal of Radars, 2019, 8(4): 501–509. doi: 10.12000/JR18090
Citation: HAN Jinwang, ZHANG Zijing, LIU Jun, et al. Adaptive Bayesian detection for MIMO radar in Gaussian clutter[J]. Journal of Radars, 2019, 8(4): 501–509. doi: 10.12000/JR18090

Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter

DOI: 10.12000/JR18090
Funds:  The National Natural Science Foundation of China (61871469, 61571349), The Natural Science Foundation of Shaanxi Province (2018JM6051)
More Information
  • Corresponding author: LIU Jun, junliu@ustc.edu.cn
  • Received Date: 2018-10-25
  • Rev Recd Date: 2019-01-03
  • Publish Date: 2019-08-28
  • For collocated Multiple-Input Multiple-Output (MIMO) radar, we investigate the target detection problem in Gaussian clutter with an unknown but random covariance matrix. An inverse complex Wishart distribution is chosen as prior knowledge for the random covariance matrix. We propose two detectors in the Bayesian framework based on the criteria of the Generalized Likelihood Ratio Test. The two main advantages of the proposed Bayesian detectors are as follows: (1) no training data are required; and (2) a prior knowledge about the clutter is incorporated in the decision rules to achieve detection performance gains. Numerical simulations show that the proposed Bayesian detectors outperform the current commonly used non-Bayesian counterparts, particularly when the sample number of the transmitted waveform is small. In addition, the performance of the proposed detector will decline in parameter mismatched situation.

     

  • loading
  • [1]
    LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken, NJ: John Wiley & Sons, 2009.
    [2]
    TANG Bo, NAGHSH M M, and TANG Jun. Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3783–3796. doi: 10.1109/TSP.2015.2423257
    [3]
    周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074

    ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074
    [4]
    王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. doi: 10.12000/JR14091

    WANG Ting, ZHAO Yongjun, and HU Tao. Overview of space-time adaptive processing for airborne MIMO radar[J]. Journal of Radars, 2015, 4(2): 136–148. doi: 10.12000/JR14091
    [5]
    HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [6]
    ZHOU Shenghua, LIU Hongwei, ZHAO Yongbo, et al. Target spatial and frequency scattering diversity property for diversity MIMO radar[J]. Signal Processing, 2011, 91(2): 269–276. doi: 10.1016/j.sigpro.2010.07.004
    [7]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [8]
    TANG Bo, ZHANG Yu, and TANG Jun. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 400–411. doi: 10.1109/TSP.2017.2771726
    [9]
    金镇, 谢良贵, 文树梁. 分布式MIMO雷达单脉冲测角[J]. 雷达学报, 2014, 3(4): 474–479. doi: 10.3724/SP.J.1300.2014.13077

    JIN Zhen, XIE Lianggui, and WEN Shuliang. Distributed MIMO radar monopulse angular estimation[J]. Journal of Radars, 2014, 3(4): 474–479. doi: 10.3724/SP.J.1300.2014.13077
    [10]
    LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [11]
    AUBRY A, DE MAIO A, and HUANG Yongwei. MIMO radar beampattern design via PSL/ISL optimization[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3955–3967. doi: 10.1109/TSP.2016.2543207
    [12]
    CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [13]
    CUI Guolong, LI Hongli, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [14]
    梁浩, 崔琛, 余剑. 十字型阵列MIMO雷达高精度二维DOA估计[J]. 雷达学报, 2016, 5(3): 254–264. doi: 10.12000/JR16016

    LIANG Hao, CUI Chen, and YU Jian. Two-dimensional DOA estimation with high accuracy for MIMO radar using cross array[J]. Journal of Radars, 2016, 5(3): 254–264. doi: 10.12000/JR16016
    [15]
    HE Qian, LEHMANN N H, BLUM R S, et al. MIMO radar moving target detection in homogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1290–1301. doi: 10.1109/TAES.2010.5545189
    [16]
    程子扬, 何子述, 王智磊, 等. 分布式MIMO雷达目标检测性能分析[J]. 雷达学报, 2017, 6(1): 81–89. doi: 10.12000/JR16147

    CHENG Ziyang, HE Zishu, WANG Zhilei, et al. Detection Performance analysis for distributed MIMO radar[J]. Journal of Radars, 2017, 6(1): 81–89. doi: 10.12000/JR16147
    [17]
    HE Qian, BLUM R S, and HAIMOVICH A M. Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3661–3680. doi: 10.1109/TSP.2010.2044613
    [18]
    FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171–186. doi: 10.1109/TAES.2008.4516997
    [19]
    BEKKERMAN I and TABRIKIAN J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873–3883. doi: 10.1109/TSP.2006.879267
    [20]
    XU Luzhou, LI Jian, and STOICA P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927–939. doi: 10.1109/TAES.2008.4655353
    [21]
    DE MAIO A, LOPS M, and VENTURINO L. Diversity-integration tradeoffs in MIMO detection[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5051–5061. doi: 10.1109/TSP.2008.928693
    [22]
    CUI Guolong, KONG Lingjiang, YANG Xiaobo, et al. The Rao and Wald tests designed for distributed targets with polarization MIMO radar in compound-Gaussian clutter[J]. Circuits, Systems, and Signal Processing, 2012, 31(1): 237–254. doi: 10.1007/s00034-010-9250-0
    [23]
    ZHANG Tianxian, CUI Guolong, KONG Lingjiang, et al. Adaptive Bayesian detection using MIMO radar in spatially heterogeneous clutter[J]. IEEE Signal Processing Letters, 2013, 20(6): 547–550. doi: 10.1109/LSP.2013.2255272
    [24]
    LIU Jun, LI Hongbin, and HIMED B. Persymmetric adaptive target detection with distributed MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 372–382. doi: 10.1109/TAES.2014.130652
    [25]
    LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A CramÉr-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [26]
    LIU Weijian, WANG Yongliang, LIU Jun, et al. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2469–2479. doi: 10.1109/TAES.2015.130754
    [27]
    LIU Jun, ZHOU Shenghua, LIU Weijian, et al. Tunable adaptive detection in colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 1080–1092. doi: 10.1109/TSP.2017.2778693
    [28]
    ZHU Xumin, LI Jian, and STOICA P. Knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1325–1336. doi: 10.1109/TAES.2011.5751261
    [29]
    WANG Yikai, XIA Wei, and HE Zishu. CFAR knowledge-aided radar detection with heterogeneous samples[J]. IEEE Signal Processing Letters, 2017, 24(5): 693–697. doi: 10.1109/LSP.2017.2688386
    [30]
    GAO Yongchan, LI Hongbin, and HIMED B. Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 617–627. doi: 10.1109/TSP.2016.2625266
    [31]
    KONG Lingjiang, LI Na, CUI Guolong, et al. Adaptive Bayesian detection for multiple-input multiple-output radar in compound-gaussian clutter with random texture[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 689–698. doi: 10.1049/iet-rsn.2015.0241
    [32]
    DE MAIO A, FARINA A, and FOGLIA G. Knowledge-aided Bayesian radar detectors & their application to live data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 170–183. doi: 10.1109/TAES.2010.5417154
    [33]
    BILLINGSLEY J B, FARINA A, GINI F, et al. Statistical analyses of measured radar ground clutter data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 579–593. doi: 10.1109/7.766939
    [34]
    MELVIN W L and SHOWMAN G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021–1042. doi: 10.1109/TAES.2006.248216
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3114) PDF downloads(217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint