Volume 8 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
ZHANG Xiangrong, YU Xinyuan, TANG Xu, et al. PolSAR image classification method based on Markov discriminant spectral clustering[J]. Journal of Radars, 2019, 8(4): 425–435. doi: 10.12000/JR19059
Citation: ZHANG Xiangrong, YU Xinyuan, TANG Xu, et al. PolSAR image classification method based on Markov discriminant spectral clustering[J]. Journal of Radars, 2019, 8(4): 425–435. doi: 10.12000/JR19059

PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering

DOI: 10.12000/JR19059
Funds:  The National Natural Science Foundation of China (61772400), The Key Research and Development Plans of Shaanxi Province (2019ZDLGY03-08)
More Information
  • Corresponding author: ZHANG Xiangrong, xrzhang@mail.xidian.edu.cn
  • Received Date: 2019-06-01
  • Rev Recd Date: 2019-07-22
  • Available Online: 2019-07-25
  • Publish Date: 2019-08-28
  • Due to the existing spectral clustering methods have low accuracy for PolSAR image classification, a Markov-based Discriminative Spectral Clustering(MDSC) method is proposed, which has the characteristics of low-rank and sparse decomposition. Firstly, a real low-rank probability transfer matrix is restored as an input to the standard Markov spectral clustering method to reduce the influence of noise on the classification result. Then the discriminative information is introduced into the objective function to make the polarimetric SAR image data can be more fully used. Finally, the augmented Lagrangian multiplier method is used to solve the objective function optimization problem under low-rank and probability simplex constraints. Experiments on three different data sets of Flevoland, Oberpfaffenhofen, and Xi’an show that our method has good accuracy and low sensitivity, which having a good classification performance.

     

  • loading
  • [1]
    邹焕新, 罗天成, 张月, 等. 基于组合条件随机场的极化SAR图像监督地物分类[J]. 雷达学报, 2017, 6(5): 541–553. doi: 10.12000/JR16109

    ZOU Huanxin, LUO Tiancheng, ZHANG Yue, et al. Combined conditional random fields model for supervised PolSAR images classification[J]. Journal of Radars, 2017, 6(5): 541–553. doi: 10.12000/JR16109
    [2]
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [3]
    BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Classification of the Yellow River delta area using fully polarimetric SAR measurements[J]. International Journal of Remote Sensing, 2017, 38(23): 6714–6734. doi: 10.1080/01431161.2017.1363437
    [4]
    JOULIN A, BACH F, and PONCE J. Discriminative clustering for image co-segmentation[C]. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1943–1950.
    [5]
    HARALICK R M, SHANMUGAM K, and DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610–621. doi: 10.1109/TSMC.1973.4309314
    [6]
    RATHA D, BHATTACHARYA A, and FRERY A C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 151–155. doi: 10.1109/LGRS.2017.2778749
    [7]
    AHMED N and CAMPBELL M. Variational Bayesian learning of probabilistic discriminative models with latent softmax variables[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3143–3153. doi: 10.1109/TSP.2011.2144587
    [8]
    LIN Zhouchen, CHEN Minming, and MA Ya. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. Eprint Arxiv, 2010(9): 26.
    [9]
    XIA Rongkai, PAN Yan, DU Lei, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, 2014: 2149–2155.
    [10]
    CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
    [11]
    ZHU Ciyou, BYRD R H, LU Peihuang, et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on Mathematical Software, 1997, 23(4): 550–560. doi: 10.1145/279232.279236
    [12]
    KUMAR Y, MULLER U, BEN J, et al. spectral clustering MIT Press[C]. 24th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2010.
    [13]
    MATSUGU M, MORI K, ISHII M, et al. Convolutional spiking neural network model for robust face detection[C]. Proceedings of the 9th International Conference on Neural Information Processing, Singapore, Singapore, 2002: 660–664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2683) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint