| Citation: | Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133 | 
	                | [1] | 
					 Yang W, Zhong N, Yang X, et al.. Riemannian sparse coding for classification of PolSAR images[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 5698-5701. 
						
					 | 
			
| [2] | 
					 田维, 徐旭, 卞小林, 等.环境一号C卫星SAR图像典型环境遥感应用初探[J].雷达学报, 2014, 3(3): 339-351. http://radars.ie.ac.cn/CN/abstract/abstract147.shtml 
					Tian Wei, Xu Xu, Bian Xiao-lin, et al.. Application of environment remote sensing by HJ-1C SAR imagery[J]. Journal of Radars, 2014, 3(3): 339-351. http://radars.ie.ac.cn/CN/abstract/abstract147.shtml 
						
					 | 
			
| [3] | 
					 Lee J S, Grunes M R, Ainworth T L, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1998, 4: 2178-2180. 
						
					 | 
			
| [4] | 
					 Ferro-Famil L, Pottier E, and Lee J S. Unsupervised classification of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2332-2342. doi:  10.1109/36.964969 
						
					 | 
			
| [5] | 
					 Ersahin K, Cumming I G, and Yedlin M J. Classification of Polarimetric SAR data using spectral graph partitioning[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), Denver, USA, 1999: 1756-1759. 
						
					 | 
			
| [6] | 
					 Kersten P R, Lee J S, and Ainworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 519-527. doi:  10.1109/TGRS.2004.842108 
						
					 | 
			
| [7] | 
					 Song H, Yang W, Bai Y, et al.. Unsupervised classification of polarimetric SAR imagery using large-scale spectral clustering with spatial constraints[J]. International Journal of Remote Sensing, 2015, 36(11): 2816-2830. doi:  10.1080/01431161.2015.1043759 
						
					 | 
			
| [8] | 
					 Wang Y, Han C, and Tupin F. PolSAR data segmentation by combining tensor space cluster analysis and Markovian framework[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 210-214. doi:  10.1109/LGRS.2009.2031660 
						
					 | 
			
| [9] | 
					 Rodriguez A and Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496. doi:  10.1126/science.1242072 
						
					 | 
			
| [10] | 
					 Tran T N, Wehrens R, Hoekman D H, et al.. Initialization of Markovian random field clustering of large remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1912-1919. doi:  10.1109/TGRS.2005.848427 
						
					 | 
			
| [11] | 
					 Cao F, Hong W, Wu Y, et al.. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex Wishart clustering for fully Polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454-3467. doi:  10.1109/TGRS.2007.907601 
						
					 | 
			
| [12] | 
					 Liu B, Hu H, Wang H, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907-924. doi:  10.1109/TGRS.2012.2203358 
						
					 | 
			
| [13] | 
					 Achanta R, Shaji A, Smith K, et al.. SLIC superpixel compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi:  10.1109/TPAMI.2012.120 
						
					 | 
			
| [14] | 
					 Yang W, Yang X L, Yan T H, et al.. Region-based change detection for polarimetric SAR images using wishart mixture models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6746-6756. doi:  10.1109/TGRS.2016.2590145 
						
					 | 
			
| [15] | 
					 Nielsen F. K-MLE: A fast algorithm for learning statistical mixture models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, 2012: 869-872. 
						
					 | 
			
| [16] | 
					 Nielsen F. Closed-form information-theoretic divergences for statistical mixtures[C]. International Conference on Pattern Recognition, Tsukuba, 2012: 1723-1726. 
						
					 | 
			
| [17] | 
					 谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法[J].中国科学:信息科学, 2016, 46(2): 258-280. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=pzkx201602008&dbname=CJFD&dbcode=CJFQ 
					Xie J Y, Gao H C, and Xie W X. K-nearnestneighbors optimized clustering algorithm by fastsearch and finding the density peaks of a dataset[J]. Scientia Sinica Informationis, 2016, 46(2): 258-280. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=pzkx201602008&dbname=CJFD&dbcode=CJFQ 
						
					 | 
			
| [18] | 
					 Cherian A, Morellas V, and Papanikolopoulos N. Bayesian nonparametric clustering for positive definite matrices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 862-874. doi:  10.1109/TPAMI.2015.2456903 
						
					 |