Li Wan-chun, Huang Cheng-feng. Optimal Trajectory Analysis for the Receiver of Passive Location Systems Using Direction Of Arrival and Doppler Measurements[J]. Journal of Radars, 2014, 3(6): 660-665. doi: 10.12000/JR14118
Citation: HUA Wenqiang, WANG Shuang, GUO Yanhe, et al. Semi-supervised PolSAR image classification based on the neighborhood minimum spanning tree[J]. Journal of Radars, 2019, 8(4): 458–470. doi: 10.12000/JR18104

Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree

DOI: 10.12000/JR18104
Funds:  The National Natural Science Foundation of China (61771379), Shaanxi Key Disciplines of Special Funds Projects
More Information
  • Corresponding author: HUA Wenqiang, huawenqiang2013@163.com
  • Received Date: 2018-12-03
  • Rev Recd Date: 2018-12-28
  • Available Online: 2019-02-19
  • Publish Date: 2019-08-28
  • In this paper, a novel semi-supervised classification method based on the Neighborhood Minimum Spanning Tree (NMST) is proposed to solve the Polarimetric Synthetic Aperture Radar (PolSAR) terrain classification when labeled samples are few. Combining the idea of self-training method and spatial information of the pixels in PolSAR image, a new help-training sample selection strategy based on spatial neighborhood information is proposed, named as NMST, to select the high reliable unlabeled samples to enlarge the training set and improve the base classifier. Finally, the PolSAR image is classified by this improved classifier. The experiments results tested on three PolSAR data sets show that the proposed method achieves a better performance than existing classification methods when the number of labeled samples is few.

     

  • [1]
    NUNZIATA F, MIGLIACCIO M, LI Xiaofeng, et al. Coastline extraction using dual-Polarimetric COSMO-SkyMed PingPong mode SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 104–108. doi: 10.1109/LGRS.2013.2247561
    [2]
    HE Jinglu, WANG Yinghua, LIU Hongwei, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 384–388. doi: 10.1109/LGRS.2017.2789204
    [3]
    BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Classification of the yellow river delta area using fully polarimetric SAR measurements[J]. International Journal of Remote Sensing, 2017, 38(23): 6714–6734. doi: 10.1080/01431161.2017.1363437
    [4]
    RATHA D, BHATTACHARYA A, and FRERY A C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 151–155. doi: 10.1109/LGRS.2017.2778749
    [5]
    LI Dong and ZHANG Yunhua. Adaptive model-based classification of PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 6940–6955. doi: 10.1109/TGRS.2018.2845944
    [6]
    HUANG Xiayuan, ZHANG Bo, QIAO Hong, et al. Local discriminant canonical correlation analysis for supervised PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2102–2106. doi: 10.1109/LGRS.2017.2752800
    [7]
    REDOLFI J, SÁNCHEZ J, and FLESIA A G. Fisher vectors for PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2057–2061. doi: 10.1109/LGRS.2017.2750800
    [8]
    LIU Hongying, WANG Yikai, YANG Shuyuan, et al. Large polarimetric SAR data semi-supervised classification with spatial-anchor graph[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1439–1458. doi: 10.1109/JSTARS.2016.2518675
    [9]
    HUA W Q, WANG S, YANG Zhao et al. Semi-supervised PolSAR image classification based on improved Tri-training[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017:3937-3940.
    [10]
    ROSENBERG C, HEBERT M, and SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]. Proceedings of the 2005 7th IEEE Workshops on Applications of Computer Vision, Breckenridge, USA, 2005: 29–36.
    [11]
    BLUM A and MITCHELL T. Combining labeled and unlabeled data with co-training[C]. Proceedings of the 11th Conference on Computational Learning Theory, Madison, USA, 1998: 92–100.
    [12]
    ZHU Zhihua and LI Ming. Tri-training: Exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529–1541. doi: 10.1109/TKDE.2005.186
    [13]
    LIU Hongying, WANG Yikai, ZHU Dexiang, et al.. Semi-supervised classification based on anchor-spatial graph for large polarimetric SAR data[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1845–1848.
    [14]
    LIU Hongying, ZHU Dexiang, YANG Shuyuan, et al. Semisupervised feature extraction with neighborhood constraints for polarimetric SAR classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3001–3015. doi: 10.1109/JSTARS.2016.2532922
    [15]
    WU Wenjin, LI Hailei, ZHANG Lu, et al. High-resolution PolSAR scene classification with pretrained deep convnets and manifold polarimetric parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6159–6168. doi: 10.1109/TGRS.2018.2833156
    [16]
    RASMUS A, VALPOLA H, HONKALA M, et al. Semi-supervised learning with ladder networks[J]. arXiv: 1507.02672, 2015.
    [17]
    CHENG Yanhua, ZHAO Xin, CAI Rui, et al. Semi-supervised multimodal deep learning for RGB-D object recognition[C]. Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 3345–3351.
    [18]
    HÄNSCH R and HELLWICH O. Semi-supervised learning for classification of polarimetric SAR-data[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 987–990.
    [19]
    Liu H Y, Wang Y K, Zhua D X et al.. Semi-supervised classification based on anchor-spatial graph for large polarimetric SAR data[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1845-1848.
    [20]
    HUA Wenqiang, WANG Shuang, LIU Hongying, et al. Semisupervised PolSAR image classification based on improved cotraining[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4971–4986. doi: 10.1109/JSTARS.2017.2728067
    [21]
    GENG Jie, MA Xiaorui, FAN Jianchao, et al. Semisupervised classification of polarimetric SAR image via superpixel restrained deep neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 122–126. doi: 10.1109/LGRS.2017.2777450
    [22]
    LASZLO M and MUKHERJEE S. Minimum spanning tree partitioning algorithm for microaggregation[J]. IEEE Transactions on Knowledge and Data Engineer, 2005, 17(7): 902–911. doi: 10.1109/TKDE.2005.112
    [23]
    王晓东. 计算机算法设计与分析[M]. 第4版, 北京: 电子工业出版社, 2012: 103–104.

    WANG Xiaodong. Design and Analysis of Algorithms[M]. 4th Ed, Beijing: China, Electronic Industry Press, 2002: 103–104.
    [24]
    LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi: 10.1109/36.789621
    [25]
    LEE J S, GRUNES M R, and DE GRANDI G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 363–373. doi: 10.1109/36.789635
    [26]
    LONG Y, and LIU X. SVM lithological classification of PolSAR image in yushigou Area, Qilian Mountain[J]. Scientific Journal of Earth Science, 2013, 3(4): 128–132.
    [27]
    LEE J S, GRUNES M R, and KWOK R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299–2311. doi: 10.1080/01431169408954244
  • Relative Articles

    [1]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [2]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [3]ZHANG Yingkui, SUN Guohao, ZHONG Suchuan, YU Xianxiang. Radar Waveform Design Method Based on Cascade Optimization Processing under Missing Clutter Prior Data[J]. Journal of Radars, 2023, 12(1): 235-246. doi: 10.12000/JR22166
    [4]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [5]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [6]WANG Xinhai, WANG Chaoyu, ZHANG Ning, CHEN Wei. Phase-only Method for Designing a Unimodular Radar Waveform with Low ISL[J]. Journal of Radars, 2022, 11(2): 255-263. doi: 10.12000/JR21137
    [7]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [8]ZHU Shengqi, YU Kun, XU Jingwei, LAN Lan, LI Ximin. Research Progress and Prospect for the Noval Waveform Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 795-810. doi: 10.12000/JR21188
    [9]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [10]ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, LI Yanlei, WU Yirong. A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466. doi: 10.12000/JR21028
    [11]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [12]YU Lei, HE Feng, DONG Zhen, SU Yi, ZHANG Yongsheng, WU Manqing. A Waveform Design Method Based on Nonlinear Frequency Modulation and Space-coding for Coherent Frequency Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 822-832. doi: 10.12000/JR21008
    [13]ZHENG Guimei, SONG Yuwei, HU Guoping, LI Binbin, ZHANG Dong. Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing[J]. Journal of Radars, 2020, 9(5): 908-915. doi: 10.12000/JR20042
    [14]YANG Huiting, ZHOU Yu, GU Yabin, ZHANG Linrang. Design of Integrated Radar and Communication Signal Based on Multicarrier Parameter Modulation Signal[J]. Journal of Radars, 2019, 8(1): 54-63. doi: 10.12000/JR18001
    [15]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [16]CUI Guolong, YU Xianxiang, YANG Jing, FU Yue, KONG Lingjiang. An Overview of Waveform Optimization Methods for Cognitive Radar[J]. Journal of Radars, 2019, 8(5): 537-557. doi: 10.12000/JR19072
    [17]Xu Jingwei, Zhu Shengqi, Liao Guisheng, Zhang Yuhong. An Overview of Frequency Diverse Array Radar Technology[J]. Journal of Radars, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [18]Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
    [19]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
    [20]Shao Qi-hong, Wan Xian-rong, Zhang De-lei, Zhao Zhi-xin, Ke Heng-yu. Experimental Study on Shortwave Communication and OTHR Integrated System Based on OFDM Waveform[J]. Journal of Radars, 2012, 1(4): 370-379. doi: 10.3724/SP.J.1300.2012.20089
  • Cited by

    Periodical cited type(9)

    1. 张翼鹏,卢东东,仇晓兰,李飞. 基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类. 雷达学报. 2024(02): 411-427 . 本站查看
    2. 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . 本站查看
    3. 马晓萌,冯舒文,原昊,张鹏宇,沈永健. 基于深度学习的雷达目标识别算法评估系统设计. 遥测遥控. 2024(03): 24-34 .
    4. 万烜申,刘伟,牛朝阳,卢万杰. 基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法. 雷达学报. 2024(03): 714-729 . 本站查看
    5. 何奇山,赵凌君,计科峰,匡纲要. 面向SAR目标识别成像参数敏感性的深度学习技术研究进展. 电子与信息学报. 2024(10): 3827-3848 .
    6. 王智睿,康玉卓,曾璇,汪越雷,张汀,孙显. SAR-AIRcraft-1.0:高分辨率SAR飞机检测识别数据集. 雷达学报. 2023(04): 906-922 . 本站查看
    7. 许延龙,潘昊,丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用. 液晶与显示. 2023(11): 1511-1520 .
    8. 叶子琦,肖夏阳,李刚田,王海鹏. 面向小样本的SAR图像飞机目标分类方法. 遥感信息. 2023(06): 60-67 .
    9. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 59.6 %META: 59.6 %PDF: 10.8 %PDF: 10.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.4 %其他: 6.4 %其他: 1.7 %其他: 1.7 %Arlington: 0.0 %Arlington: 0.0 %Australia: 0.0 %Australia: 0.0 %Baden: 0.0 %Baden: 0.0 %Bangladesh: 0.0 %Bangladesh: 0.0 %Belgium: 0.0 %Belgium: 0.0 %Canada: 0.0 %Canada: 0.0 %Canton: 0.0 %Canton: 0.0 %Central District: 0.1 %Central District: 0.1 %China: 2.3 %China: 2.3 %Czech Republic: 0.0 %Czech Republic: 0.0 %European Union: 0.0 %European Union: 0.0 %Falls Church: 0.0 %Falls Church: 0.0 %Germany: 0.1 %Germany: 0.1 %Greece: 0.1 %Greece: 0.1 %Hanoi: 0.2 %Hanoi: 0.2 %Herndon: 0.1 %Herndon: 0.1 %India: 0.1 %India: 0.1 %Indonesia: 0.0 %Indonesia: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Macau: 0.0 %Macau: 0.0 %Matawan: 0.1 %Matawan: 0.1 %Morocco: 0.0 %Morocco: 0.0 %North Point: 0.0 %North Point: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Secaucus: 0.0 %Secaucus: 0.0 %State College: 0.0 %State College: 0.0 %Sweden: 0.1 %Sweden: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Thane: 0.0 %Thane: 0.0 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.2 %United States: 0.2 %Viet Nam: 0.0 %Viet Nam: 0.0 %Wyoming: 0.0 %Wyoming: 0.0 %[]: 1.8 %[]: 1.8 %三亚: 0.1 %三亚: 0.1 %三明: 0.0 %三明: 0.0 %上海: 2.3 %上海: 2.3 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东京都: 0.0 %东京都: 0.0 %东莞: 0.4 %东莞: 0.4 %中卫: 0.0 %中卫: 0.0 %中山: 0.0 %中山: 0.0 %丹东: 0.0 %丹东: 0.0 %乌海: 0.0 %乌海: 0.0 %乐山: 0.0 %乐山: 0.0 %九江: 0.1 %九江: 0.1 %亳州: 0.0 %亳州: 0.0 %伊斯兰堡: 0.0 %伊斯兰堡: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.0 %内江: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 11.2 %北京: 11.2 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 4.8 %南京: 4.8 %南充: 0.0 %南充: 0.0 %南宁: 0.2 %南宁: 0.2 %南平: 0.0 %南平: 0.0 %南昌: 0.3 %南昌: 0.3 %南荷兰省: 0.0 %南荷兰省: 0.0 %南通: 0.1 %南通: 0.1 %卡纳塔克邦: 0.0 %卡纳塔克邦: 0.0 %印度尼西亚北苏门答腊: 0.0 %印度尼西亚北苏门答腊: 0.0 %厦门: 0.2 %厦门: 0.2 %台中: 0.2 %台中: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.7 %合肥: 0.7 %吉林: 0.0 %吉林: 0.0 %吉隆坡: 0.0 %吉隆坡: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.8 %哈尔滨: 0.8 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.0 %圣地亚哥: 0.0 %圣安东尼奥: 0.0 %圣安东尼奥: 0.0 %圣彼得堡: 0.0 %圣彼得堡: 0.0 %圣约翰斯: 0.1 %圣约翰斯: 0.1 %埃德蒙顿: 0.0 %埃德蒙顿: 0.0 %墨尔本: 0.0 %墨尔本: 0.0 %大庆: 0.0 %大庆: 0.0 %大连: 0.2 %大连: 0.2 %天水围: 0.0 %天水围: 0.0 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %奥卢: 0.0 %奥卢: 0.0 %奥尔巴尼: 0.0 %奥尔巴尼: 0.0 %威海: 0.2 %威海: 0.2 %娄底: 0.0 %娄底: 0.0 %孟买: 0.3 %孟买: 0.3 %宁波: 0.3 %宁波: 0.3 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.0 %安顺: 0.0 %宜兰: 0.0 %宜兰: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.3 %宣城: 0.3 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %巴伐利亚州: 0.1 %巴伐利亚州: 0.1 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %布兰普顿: 0.0 %布兰普顿: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 1.7 %广州: 1.7 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.0 %廊坊: 0.0 %延安: 0.0 %延安: 0.0 %开封: 0.0 %开封: 0.0 %张家口: 0.8 %张家口: 0.8 %徐州: 0.1 %徐州: 0.1 %德罕: 0.0 %德罕: 0.0 %德里: 0.0 %德里: 0.0 %德阳: 0.0 %德阳: 0.0 %德黑兰: 0.0 %德黑兰: 0.0 %怀化: 0.0 %怀化: 0.0 %悉尼: 0.1 %悉尼: 0.1 %惠州: 0.0 %惠州: 0.0 %意法半: 0.0 %意法半: 0.0 %成都: 3.7 %成都: 3.7 %扬州: 0.3 %扬州: 0.3 %抚州: 0.0 %抚州: 0.0 %拉斯维加斯: 0.0 %拉斯维加斯: 0.0 %拉萨: 0.0 %拉萨: 0.0 %拉贾斯坦邦: 0.0 %拉贾斯坦邦: 0.0 %拉雷多: 0.0 %拉雷多: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新伦敦: 0.0 %新伦敦: 0.0 %新加坡: 0.1 %新加坡: 0.1 %新北: 0.0 %新北: 0.0 %新竹: 0.0 %新竹: 0.0 %无锡: 0.3 %无锡: 0.3 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %格拉沃利讷: 0.1 %格拉沃利讷: 0.1 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %榆林: 0.1 %榆林: 0.1 %: 0.0 %: 0.0 %武汉: 1.0 %武汉: 1.0 %毕节: 0.0 %毕节: 0.0 %永州: 0.0 %永州: 0.0 %汉中: 0.0 %汉中: 0.0 %汕头: 0.1 %汕头: 0.1 %江门: 0.0 %江门: 0.0 %池州: 0.0 %池州: 0.0 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.0 %沧州: 0.0 %泰州: 0.2 %泰州: 0.2 %泰米尔纳德: 0.0 %泰米尔纳德: 0.0 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %济宁: 0.0 %济宁: 0.0 %济源: 0.1 %济源: 0.1 %海口: 0.0 %海口: 0.0 %海西: 0.0 %海西: 0.0 %淮北: 0.0 %淮北: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 1.5 %深圳: 1.5 %清州: 0.0 %清州: 0.0 %清远: 0.0 %清远: 0.0 %渥太华: 0.1 %渥太华: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %湘西: 0.0 %湘西: 0.0 %湛江: 0.0 %湛江: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.0 %潍坊: 0.0 %潮州: 0.0 %潮州: 0.0 %澳门特别行政区: 0.0 %澳门特别行政区: 0.0 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %牡丹江: 0.0 %牡丹江: 0.0 %特伦甘地: 0.1 %特伦甘地: 0.1 %珠海: 0.1 %珠海: 0.1 %白山: 0.0 %白山: 0.0 %白银: 0.0 %白银: 0.0 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %纽敦: 0.0 %纽敦: 0.0 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绥化: 0.0 %绥化: 0.0 %绵阳: 0.2 %绵阳: 0.2 %罗马: 0.0 %罗马: 0.0 %美国加利福尼亚圣地亚哥: 0.0 %美国加利福尼亚圣地亚哥: 0.0 %肇庆: 0.0 %肇庆: 0.0 %胡志明: 0.1 %胡志明: 0.1 %自贡: 0.0 %自贡: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %莫斯科: 0.0 %莫斯科: 0.0 %莱芜: 0.0 %莱芜: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萨尔州: 0.0 %萨尔州: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 11.4 %西宁: 11.4 %西安: 2.8 %西安: 2.8 %西班牙: 0.0 %西班牙: 0.0 %西雅图: 0.0 %西雅图: 0.0 %诺伊达: 0.0 %诺伊达: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.0 %赣州: 0.0 %赤峰: 0.0 %赤峰: 0.0 %车士活: 0.0 %车士活: 0.0 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %遂宁: 0.0 %遂宁: 0.0 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %郴州: 0.0 %郴州: 0.0 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.1 %金华: 0.1 %金奈: 0.1 %金奈: 0.1 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %镇江: 0.2 %镇江: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 1.9 %长沙: 1.9 %长治: 0.0 %长治: 0.0 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.0 %阳泉: 0.0 %阿坝: 0.0 %阿坝: 0.0 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %阿尔泽特河畔埃施: 0.0 %阿尔泽特河畔埃施: 0.0 %阿布扎比: 0.1 %阿布扎比: 0.1 %阿德莱德: 0.1 %阿德莱德: 0.1 %霍德夏沙隆: 0.0 %霍德夏沙隆: 0.0 %青岛: 0.6 %青岛: 0.6 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %马鞍山: 0.0 %马鞍山: 0.0 %黄冈: 0.0 %黄冈: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龟尾: 0.0 %龟尾: 0.0 %其他其他ArlingtonAustraliaBadenBangladeshBelgiumCanadaCantonCentral DistrictChinaCzech RepublicEuropean UnionFalls ChurchGermanyGreeceHanoiHerndonIndiaIndonesiaKorea Republic ofMacauMatawanMoroccoNorth PointSaudi ArabiaSeattleSecaucusState CollegeSwedenTaichungTaiwan, ChinaThaneUnited KingdomUnited StatesViet NamWyoming[]三亚三明上海上饶东京东京都东莞中卫中山丹东乌海乐山九江亳州伊斯兰堡休斯敦伦敦佛山佳木斯保定信阳六安兰州内江凤凰城加利福尼亚州包头北京北海十堰南京南充南宁南平南昌南荷兰省南通卡纳塔克邦印度尼西亚北苏门答腊厦门台中台北台州台湾省合肥吉林吉隆坡呼和浩特咸阳哈尔滨哥伦布唐山商丘嘉兴圣地亚哥圣安东尼奥圣彼得堡圣约翰斯埃德蒙顿墨尔本大庆大连天水围天津太原奥卢奥尔巴尼威海娄底孟买宁波安卡拉安康安顺宜兰宜宾宜春宝鸡宣城密蘇里城巴中巴伐利亚州巴音郭楞巴音郭楞蒙古自治州布兰普顿常州常德平顶山广州庆阳库比蒂诺廊坊延安开封张家口徐州德罕德里德阳德黑兰怀化悉尼惠州意法半成都扬州抚州拉斯维加斯拉萨拉贾斯坦邦拉雷多揭阳新伦敦新加坡新北新竹无锡日照昆明晋中晋城朝阳杭州枣庄柳州株洲格兰特县格拉沃利讷桂林梅州榆林武汉毕节永州汉中汕头江门池州沈阳沧州泰州泰米尔纳德泸州洛阳济南济宁济源海口海西淮北淮南深圳清州清远渥太华温州渭南湖州湘潭湘西湛江滁州漯河潍坊潮州澳门特别行政区濮阳烟台焦作牡丹江特伦甘地珠海白山白银眉山石家庄福州秦皇岛纽敦纽约绍兴绥化绵阳罗马美国加利福尼亚圣地亚哥肇庆胡志明自贡舟山芒廷维尤芜湖芝加哥苏州莫斯科莱芜菏泽萨尔州葫芦岛蚌埠衡水衡阳衢州西宁西安西班牙西雅图诺伊达诺沃克贵阳赣州赤峰车士活达州运城遂宁邢台邯郸郑州郴州鄂州重庆金华金奈铁岭银川锦州镇江长春长沙长治阜阳阳泉阿坝阿姆斯特丹阿尔泽特河畔埃施阿布扎比阿德莱德霍德夏沙隆青岛鞍山韶关香港香港特别行政区马鞍山黄冈齐齐哈尔龟尾1/2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3155) PDF downloads(210) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint