Volume 10 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHU Qingtao, YIN Junjun, ZENG Liang, et al. Polarimetric SAR image affine registration based on neighborhood consensus[J]. Journal of Radars, 2021, 10(1): 49–60. doi: 10.12000/JR20120
Citation: ZHU Qingtao, YIN Junjun, ZENG Liang, et al. Polarimetric SAR image affine registration based on neighborhood consensus[J]. Journal of Radars, 2021, 10(1): 49–60. doi: 10.12000/JR20120

Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus

DOI: 10.12000/JR20120
Funds:  The National Natural Science Foundation of China (61771043), The Fundamental Research Funds for the Central Universities (FRF-IDRY-19-008, FRF-GF-19-017B)
More Information
  • As the base of Synthetic Aperture Radar (SAR) image processing, the registration of polarimetric SAR images requires high accuracy and a fast speed. Most methods used to register polarimetric SAR images based on deep learning are combined with patch matching and iterative estimation, e.g. the random sample consensus algorithm. However, end-to-end deep convolutional neural networks have not been used in the non-iterative affine registration of polarimetric SAR images. This paper proposes a framework for end-to-end polarimetric SAR image registration that is based on weakly-supervised learning and uses no image patch processing or iterative parameter estimation. First, feature extraction is performed on input image pairs to obtain dense feature maps with the most relevant k matches kept for each feature point. To filter the matched feature pairs, the 4D sparse feature matching maps are then fed into a 4D sparse convolutional network based on neighborhood consensus. Lastly, the affine parameters are solved by the weighted least square method according to the degree of confidence of the matches, which enables the affine registration of the input image pair. As test image pairs, we use farmland data from Wallerfing, Germany obtained by the RADARSAT-2 satellite and Zhoushan port data from China obtained by the PAZ satellite. Comprehensive experiments were conducted on polarimetric SAR image pairs using different orbit directions, imaging modes, polarization types and resolutions. Compared with four existing methods, the proposed method was found to have high accuracy and a fast speed.

     

  • loading
  • [1]
    WANG Shuang, QUAN Dou, LIANG Xuefeng, et al. A deep learning framework for remote sensing image registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 148–164. doi: 10.1016/j.isprsjprs.2017.12.012
    [2]
    YANG Zhuoqian, DAN Tingting, and YANG Yang. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018, 6: 38544–38555. doi: 10.1109/ACCESS.2018.2853100
    [3]
    SARVAIYA J N, PATNAIK S, and BOMBAYWALA S. Image registration by template matching using normalized cross-correlation[C]. 2009 IEEE International Conference on Advances in Computing, Control, and Telecommunication Technologies, Trivandrum, India, 2009: 819–822. doi: 10.1109/ACT.2009.207.
    [4]
    GAN Rui, WU Jue, CHUNG A C S, et al. Multiresolution image registration based on Kullback-Leibler distance[C]. The 7th International Conference on Medical Image Computing and Computer-Assisted Intervention. Saint-Malo, France, 2004: 599–606. doi: 10.1007/978-3-540-30135-6_73.
    [5]
    张涛, 王正勇, 张影, 等. 基于和声算法的图像配准技术[J]. 电视技术, 2014, 38(7): 9–12. doi: 10.16280/j.videoe.2014.07.032

    ZHANG Tao, WANG Zhengyong, ZHANG Ying, et al. Image registration techniques based on harmony search algorithm[J]. Video Engineering, 2014, 38(7): 9–12. doi: 10.16280/j.videoe.2014.07.032
    [6]
    AVERBUCH A and KELLER Y. FFT based image registration[C]. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, USA, 2002: IV-3608–IV-3611. doi: 10.1109/ICASSP.2002.5745436.
    [7]
    HARRIS C and STEPHENS M. A combined corner and edge detector[C]. The 4th Alvey Vision Conference, Manchester, UK, 1988. doi: 10.5244/C.2.23.
    [8]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
    [9]
    WANG Yufan, YU Qiuze, and YU Wenxian. An improved normalized cross correlation algorithm for SAR image registration[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2086–2089. doi: 10.1109/IGARSS.2012.6350961.
    [10]
    DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453–466. doi: 10.1109/TGRS.2014.2323552
    [11]
    MA Wenping, WEN Zelian, WU Yue, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 3–7. doi: 10.1109/LGRS.2016.2600858
    [12]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [13]
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
    [14]
    JIN Kan, CHEN Yilun, XU Bin, et al. A patch-to-pixel convolutional neural network for small ship detection with PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6623–6638. doi: 10.1109/TGRS.2020.2978268
    [15]
    DETONE D, MALISIEWICZ T, and RABINOVICH A. Deep image homography estimation[J]. arXiv: 1606.03798, 2016.
    [16]
    ROCCO I, ARANDJELOVIC R, and SIVIC J. Convolutional neural network architecture for geometric matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2553–2567. doi: 10.1109/TPAMI.2018.2865351
    [17]
    BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788–1800. doi: 10.1109/TMI.2019.2897538
    [18]
    ROCCO I, CIMPOI M, ARANDJELOVIĆ R, et al. Neighbourhood consensus networks[C]. Advances in Neural Information Processing Systems 31, Montréal, Canada, 2018: 1651–1662.
    [19]
    ROCCO I, ARANDJELOVIĆ R, and SIVIC J. Efficient neighbourhood consensus networks via submanifold sparse convolutions[J]. arXiv: 2004.10566, 2020.
    [20]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708.
    [21]
    CHOY C, GWAK J Y, and SAVARESE S. 4D Spatio-temporal Convnets: Minkowski convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3075–3084.
    [22]
    YANG Yi and RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2878–2890. doi: 10.1109/TPAMI.2012.261
    [23]
    魏天华. 基于多核DSP的加速SAR-SIFT算法并行计算设计[D]. [硕士论文], 西安电子科技大学, 2020.

    WEI Tianhua. Parallel calculation of speed-up SAR-SIFT algorithm based on multi-score DSP[D]. [Master dissertation], Xidian University, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2682) PDF downloads(235) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint