Citation: | |
[1] |
KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
|
[2] |
ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
|
[3] |
DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
|
[4] |
CONTE E, DE MAIO A, and RICCI G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336–1348. doi: 10.1109/78.928688
|
[5] |
GINI F and GRECO M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(3): 115–124. doi: 10.1049/ip-rsn:20020272
|
[6] |
SANGSTON K J, GINI F, GRECO M V, et al. Structures for radar detection in compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 445–458. doi: 10.1109/7.766928
|
[7] |
XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture[J]. Digital Signal Processing, 2016, 56: 132–139. doi: 10.1016/j.dsp.2016.06.009
|
[8] |
SHANG Xiuqin, SONG Hongjun, WANG Yu, et al. Adaptive detection of distributed targets in compound-Gaussian clutter with inverse gamma texture[J]. Digital Signal Processing, 2012, 22(6): 1024–1030. doi: 10.1016/j.dsp.2012.05.002
|
[9] |
SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621
|
[10] |
DONG Y. Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 283–292. doi: 10.1049/iet-rsn.2011.0273
|
[11] |
SHUI Penglang, LIU Ming, and XU Shuwen. Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. doi: 10.1109/TAES.2015.140109
|
[12] |
PULSONE N B and RADER C M. Adaptive beamformer orthogonal rejection test[J]. IEEE Transactions on Signal Processing, 2001, 49(3): 521–529. doi: 10.1109/78.905870
|
[13] |
BANDIERA F, BESSON O, and RICCI G. An ABORT-like detector with improved mismatched signals rejection capabilities[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 14–25. doi: 10.1109/TSP.2007.906690
|
[14] |
LIU Weijian, LIU Jun, DU Qinglei, et al. Distributed target detection in partially homogeneous environment when signal mismatch occurs[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3918–3928. doi: 10.1109/TSP.2018.2841860
|
[15] |
RANGASWAMY M, WEINER D D, and OZTURK A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. doi: 10.1109/7.249117
|
[16] |
YAO K. A representation theorem and its applications to spherically-invariant random processes[J]. IEEE Transactions on Information Theory, 1973, 19(5): 600–608. doi: 10.1109/TIT.1973.1055076
|
[17] |
RICHMOND C D. Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1248–1262. doi: 10.1109/78.839973
|
[18] |
RICHMOND C D. Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263–1273. doi: 10.1109/78.839974
|
[19] |
CONTE E and DE MAIO A. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 284–302. doi: 10.1109/JOE.2004.826901
|
[20] |
CONTE E, LOPS M, and RICCI G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248–250. doi: 10.1109/97.511809
|
[1] | YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198 |
[2] | CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147 |
[3] | ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120 |
[4] | PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061 |
[5] | QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062 |
[6] | DENG Yunkai, YU Weidong, ZHANG Heng, WANG Wei, LIU Dacheng, WANG Robert. Forthcoming Spaceborne SAR Development[J]. Journal of Radars, 2020, 9(1): 1-33. doi: 10.12000/JR20008 |
[7] | LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087 |
[8] | LENG Xiangguang, JI Kefeng, XIONG Boli, KUANG Gangyao. Statistical Modeling Methods of Single-channel Complex-valued SAR Images for Ship Detection[J]. Journal of Radars, 2020, 9(3): 477-496. doi: 10.12000/JR20070 |
[9] | CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041 |
[10] | ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055 |
[11] | ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059 |
[12] | Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033 |
[13] | Zou Huanxin, Luo Tiancheng, Zhang Yue, Zhou Shilin. Combined Conditional Random Fields Model for Supervised PolSAR Images Classification[J]. Journal of Radars, 2017, 6(5): 541-553. doi: 10.12000/JR16109 |
[14] | Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031 |
[15] | Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059 |
[16] | Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124 |
[17] | Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074 |
[18] | Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019 |
[19] | Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083 |
[20] | Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138 |
1. | 师俞晨. 基于遥感影像水下目标尾迹探测综述. 现代防御技术. 2024(01): 83-91 . ![]() | |
2. | 李煜,杨静飞,张鸿生,李刚,陈杰. 极化合成孔径雷达遥感地物分类研究进展. 遥感学报. 2024(08): 1835-1853 . ![]() | |
3. | 周慧,朱虹,陈澎. 基于可变形的多尺度自注意力特征融合SAR影像舰船识别. 大连海事大学学报. 2024(04): 110-118 . ![]() | |
4. | 林晓晶,肖鹏浩,何良,王海鹏. 基于极化神经网络的雷达舰船检测识别方法. 上海航天(中英文). 2023(01): 53-60 . ![]() | |
5. | 邢世其,全斯农,范晖,王威,黄大通,李永祯,王雪松. 联合数学规划策略和精细极化分解的极化SAR舰船目标检测. 中国科学:信息科学. 2023(03): 585-605 . ![]() | |
6. | 向诚,颜世杰,桂玲. 不平衡SAR图像舰船目标识别模型. 舰船科学技术. 2023(05): 174-177 . ![]() | |
7. | 曹运运,杨子渊,刘维建,刘涛. 雷达极化对角加载检测器的最优权重算法. 雷达科学与技术. 2023(02): 222-230 . ![]() | |
8. | 罗嘉豪,殷君君,杨健. 基于超像素与稀疏重构显著性的极化SAR舰船检测. 工程科学学报. 2023(10): 1684-1692 . ![]() | |
9. | 李郝亮,陈思伟. 海面角反射体电磁散射特性与雷达鉴别研究进展与展望. 雷达学报. 2023(04): 738-761 . ![]() | |
10. | 王春华,王方超. 基于改进阈值函数的SAR图像小波去噪方法. 微电子学与计算机. 2022(05): 39-44 . ![]() | |
11. | 王少博,张成,苏迪,冀瑞静. 基于改进YOLOv3和核相关滤波算法的旋转弹目标探测算法. 兵工学报. 2022(05): 1032-1045 . ![]() | |
12. | 王志鹤,行坤,崔宁,喻忠军. 一种基于Radon变换和尾迹模型的尾迹检测算法. 电子设计工程. 2022(12): 1-6 . ![]() | |
13. | 任吉宏,刘畅. 基于自适应超像素的少样本极化SAR图像特征增强方法研究. 电子技术应用. 2022(10): 144-149 . ![]() | |
14. | 张阳,刘小芳,周鹏成. 改进Faster R-CNN的SAR图像船舶检测技术. 无线电工程. 2022(12): 2280-2287 . ![]() | |
15. | 常佳慧,赵建辉,李宁. 一种改进的2P-CFAR SAR舰船检测方法. 国外电子测量技术. 2021(11): 7-12 . ![]() |