Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
Citation: XU Shuwen, SHI Xingyu, and SHUI Penglang. An adaptive detector with mismatched signals rejection in compound Gaussian clutter [J]. Journal of Radars, 2019, 8(3): 326–334. doi: 10.12000/JR19030

An Adaptive Detector with Mismatched Signals Rejection in Compound Gaussian Clutter

DOI: 10.12000/JR19030
Funds:  The National Natural Science Foundation of China (61871303), The Foundation of National Key Laboratory of Electromagnetic Environment (6142403180204), The Natural Science Basic Research Plan in Shaanxi Province of China (2017JM6031), Young Talent Fund of University Association for Science and Technology in Shaanxi (20160205), Foreign Scholars in University Research and Teaching Programs (the 111 Project) (B18039)
More Information
  • Corresponding author: XU Shuwen, swxu@mail.xidian.edu.cn
  • Received Date: 2019-02-25
  • Rev Recd Date: 2019-05-05
  • Available Online: 2019-05-20
  • Publish Date: 2019-06-01
  • Because of the improvement in radar resolution and decrease in grazing angle, the amplitude distribution of sea clutter obviously deviates from the Rayleigh distribution and presents a significant non-Gaussian feature. In this case, the compound Gaussian model is widely used. This study investigates the problem of detecting a target when signal mismatches occur in compound Gaussian clutter and proposes a selective detector to reject mismatched signals embedded in compound Gaussian clutter based on the so-called two-step Generalized Likelihood Ratio Test (GLRT). To design the selective detector, we modified the original hypothesis test by injecting a fictitious interference under the null hypothesis. These unwanted signals are assumed to be orthogonal to the nominal steering vector in the whitened subspace. The proposed detector has a Constant False Alarm Rate (CFAR) with respect to the statistics of the texture and covariance matrix. Finally, to demonstrate the effectiveness of the proposed detector, a Monte Carlo simulation is conducted to assess its performance based on the simulated and measured sea clutter data. The experimental results show that the proposed detector effectively improves the selectivity of the mismatched signals together with the detection of matched signals in a range spread target of 1~3 dB.

     

  • [1]
    KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [2]
    ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [3]
    DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238
    [4]
    CONTE E, DE MAIO A, and RICCI G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336–1348. doi: 10.1109/78.928688
    [5]
    GINI F and GRECO M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(3): 115–124. doi: 10.1049/ip-rsn:20020272
    [6]
    SANGSTON K J, GINI F, GRECO M V, et al. Structures for radar detection in compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 445–458. doi: 10.1109/7.766928
    [7]
    XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture[J]. Digital Signal Processing, 2016, 56: 132–139. doi: 10.1016/j.dsp.2016.06.009
    [8]
    SHANG Xiuqin, SONG Hongjun, WANG Yu, et al. Adaptive detection of distributed targets in compound-Gaussian clutter with inverse gamma texture[J]. Digital Signal Processing, 2012, 22(6): 1024–1030. doi: 10.1016/j.dsp.2012.05.002
    [9]
    SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621
    [10]
    DONG Y. Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 283–292. doi: 10.1049/iet-rsn.2011.0273
    [11]
    SHUI Penglang, LIU Ming, and XU Shuwen. Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. doi: 10.1109/TAES.2015.140109
    [12]
    PULSONE N B and RADER C M. Adaptive beamformer orthogonal rejection test[J]. IEEE Transactions on Signal Processing, 2001, 49(3): 521–529. doi: 10.1109/78.905870
    [13]
    BANDIERA F, BESSON O, and RICCI G. An ABORT-like detector with improved mismatched signals rejection capabilities[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 14–25. doi: 10.1109/TSP.2007.906690
    [14]
    LIU Weijian, LIU Jun, DU Qinglei, et al. Distributed target detection in partially homogeneous environment when signal mismatch occurs[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3918–3928. doi: 10.1109/TSP.2018.2841860
    [15]
    RANGASWAMY M, WEINER D D, and OZTURK A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. doi: 10.1109/7.249117
    [16]
    YAO K. A representation theorem and its applications to spherically-invariant random processes[J]. IEEE Transactions on Information Theory, 1973, 19(5): 600–608. doi: 10.1109/TIT.1973.1055076
    [17]
    RICHMOND C D. Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1248–1262. doi: 10.1109/78.839973
    [18]
    RICHMOND C D. Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263–1273. doi: 10.1109/78.839974
    [19]
    CONTE E and DE MAIO A. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 284–302. doi: 10.1109/JOE.2004.826901
    [20]
    CONTE E, LOPS M, and RICCI G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248–250. doi: 10.1109/97.511809
  • Relative Articles

    [1]KANG Jian, TONG Fengyu, BAI Yusong, DING Xiang, JI Tengyu, ZHANG Zhe. SAR Time Series Despeckling Based on Additive Signal Component Decomposition in Logarithm Domain[J]. Journal of Radars, 2023, 12(5): 1031-1043. doi: 10.12000/JR22242
    [2]CHEN Shiqi, WANG Wei, ZHAN Ronghui, ZHANG Jun, LIU Shengqi. A Lightweight, Arbitrary-oriented SAR Ship Detector via Feature Map-based Knowledge Distillation[J]. Journal of Radars, 2023, 12(1): 140-153. doi: 10.12000/JR21209
    [3]GAO Yongchan, PAN Liyan, LI Yachao, ZUO Lei. Multi-rank Range-spread Target Detection Method for Space/Time Symmetric Array Radar under Non-Gaussian Clutter Background[J]. Journal of Radars, 2022, 11(5): 765-777. doi: 10.12000/JR22013
    [4]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [5]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [6]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [7]HUANG Yinli, SUN Lu, GUO Liang, SUN Guangcai, XING Mengdao, YANG Jun, HU Yihua. Ship Detection Algorithm Based on Spatially Variant Apodization Sidelobe Suppression and Order Statistic-Constant False Alarm Rate[J]. Journal of Radars, 2020, 9(2): 335-342. doi: 10.12000/JR19082
    [8]HAN Jinwang, ZHANG Zijing, LIU Jun, ZHAO Yongbo. Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter[J]. Journal of Radars, 2019, 8(4): 501-509. doi: 10.12000/JR18090
    [9]ZHANG Yunlei, TANG Jun, WANG Li. Hypothesis-testing-based Range Statistical Resolution Limit of Radar[J]. Journal of Radars, 2019, 8(1): 17-24. doi: 10.12000/JR18085
    [10]Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065
    [11]Fu Yue, Cui Guolong, Yu Xianxiang. Robust Design of Constant Modulus Sequence and Receiver Filter in the Presence of Signal-dependent Clutter[J]. Journal of Radars, 2017, 6(3): 292-299. doi: 10.12000/JR16158
    [12]Han Zhuangzhi, Song Chunji, Hou Jianqiang. Analysis of Multiresolution Characteristics of Complex Continuous Wave Signal Modulated by Pseudocode Family[J]. Journal of Radars, 2016, 5(3): 278-283. doi: 10.12000/JR15100
    [13]Liu Cheng-cheng, Liu Ya-qi, Zhao Yong-jun, Yang Jing. Laguerre Wideband Beamforming Algorithm Based on Generalized Sidelobe Canceller[J]. Journal of Radars, 2015, 4(3): 295-300. doi: 10.12000/JR14104
    [14]Xiong Peng, Liu Zheng, Jiang Wen-li. TDOA Estimation Algorithm of Hybrid Modulation Radar Signals[J]. Journal of Radars, 2015, 4(4): 460-466. doi: 10.12000/JR15072
    [15]Zou Kun, Wu De-wei, Zhang Bin, Li Wei. A Tunable Adaptive Detector for Mismatched Signal[J]. Journal of Radars, 2015, 4(4): 411-417. doi: 10.12000/JR14129
    [16]Liu Wei-jian, Wang Li-cai, Di Yuan-shui, Jian Tao, Xie Dang, Wang Yong-liang. Adaptive Energy Detector and Its Application for Mismatched Signal Detection(in English)[J]. Journal of Radars, 2015, 4(2): 149-159. doi: 10.12000/JR14132
    [17]Yi Jian-xin, Wan Xian-rong, Zhao Zhi-xin, Cheng Feng, Ke Heng-yu. Subcarrier-based Processing for Clutter Rejection in CP-OFDM Signal-based Passive Radar Using SFN Configuration (in English)[J]. Journal of Radars, 2013, 2(1): 1-13. doi: 10.3724/SP.J.1300.2013.13030
    [18]Jiang Bai-feng, Lü Xiao-de, Xiang Mao-sheng. A New Low-elevation Estimation Method Based on a General MUSIC Algorithm[J]. Journal of Radars, 2013, 2(4): 422-429. doi: 10.3724/SP.J.1300.2013.13090
    [19]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
    [20]Wang Hai-yang, Jiang Yue-song. A Synthetic Aperture System Based on Backscattering Signals of Compass Navigation Satellite: Concept and Feasibility[J]. Journal of Radars, 2012, 1(2): 209-216. doi: 10.3724/SP.J.1300.2012.20041
  • Cited by

    Periodical cited type(10)

    1. 钟林茂,尤鹏杰,王琳,王海涛. 基于时频分形特征的雨杂波环境目标检测算法. 电子测量技术. 2024(07): 106-113 .
    2. 崔炜程,冯阳,缪惠峰,刘满朝. 基于杂波边缘检测的精细化雷达杂波图处理方法. 现代信息科技. 2024(20): 19-22 .
    3. 张俊玲,董玫,陈伯孝. 基于可调Q因子小波变换的海杂波抑制算法. 系统工程与电子技术. 2023(02): 343-351 .
    4. 石星宇,许述文,王晓峰,董烁烁. 复合高斯杂波下距离扩展目标斜对称自适应子空间检测器. 信号处理. 2023(06): 1036-1046 .
    5. 高永婵,潘丽燕,李亚超,左磊. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法. 雷达学报. 2022(05): 765-777 . 本站查看
    6. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
    7. 牟效乾,陈小龙,关键,周伟,刘宁波,董云龙. 基于INet的雷达图像杂波抑制和目标检测方法. 雷达学报. 2020(04): 640-653 . 本站查看
    8. 周寒瑜,祝怡翔,陆龙. 一种基于逆高斯纹理的MIMO雷达AMF检测算法. 电子测量技术. 2020(17): 62-65 .
    9. 时艳玲,刘浩,刘子鹏,李君豪. 基于GLRT的逆高斯纹理海杂波背景下目标检测器. 信号处理. 2020(12): 2067-2073 .
    10. 熊显名,范邓楠. 一种基于微波雷达的自适应门限检测方法. 电子测试. 2019(24): 28-31+82 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 63.5 %META: 63.5 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 0.8 %China: 0.8 %France: 0.0 %France: 0.0 %India: 0.0 %India: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.9 %[]: 0.9 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.2 %临汾: 0.2 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %元朗新墟: 0.3 %元朗新墟: 0.3 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 13.1 %北京: 13.1 %北京市: 0.3 %北京市: 0.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.4 %南京: 2.4 %南充: 0.1 %南充: 0.1 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %南阳: 0.0 %南阳: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.3 %台州: 0.3 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大庆: 0.0 %大庆: 0.0 %大理: 0.0 %大理: 0.0 %大连: 0.2 %大连: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.0 %太原: 0.0 %威海: 0.1 %威海: 0.1 %安康: 0.1 %安康: 0.1 %安徽: 0.0 %安徽: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宿州: 0.1 %宿州: 0.1 %宿迁: 0.0 %宿迁: 0.0 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广安: 0.0 %广安: 0.0 %广州: 0.4 %广州: 0.4 %广西壮族自治区南宁: 0.0 %广西壮族自治区南宁: 0.0 %广西壮族自治区桂林: 0.1 %广西壮族自治区桂林: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.0 %延安: 0.0 %张家口: 1.5 %张家口: 1.5 %张家口市: 0.1 %张家口市: 0.1 %张掖: 0.2 %张掖: 0.2 %徐州: 0.0 %徐州: 0.0 %成都: 1.6 %成都: 1.6 %扬州: 0.6 %扬州: 0.6 %新乡: 0.3 %新乡: 0.3 %新疆维吾尔自治区哈密: 0.0 %新疆维吾尔自治区哈密: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.2 %杭州: 1.2 %杭州市: 0.0 %杭州市: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 1.5 %武汉: 1.5 %池州: 0.0 %池州: 0.0 %沈阳: 0.3 %沈阳: 0.3 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.6 %济南: 0.6 %海口: 0.0 %海口: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.0 %湛江: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.4 %漯河: 0.4 %潮州: 0.1 %潮州: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %益阳: 0.1 %益阳: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.0 %绵阳: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 18.9 %芒廷维尤: 18.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %荆门: 0.0 %荆门: 0.0 %莆田: 0.0 %莆田: 0.0 %莱芜: 0.1 %莱芜: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 29.7 %西宁: 29.7 %西安: 4.3 %西安: 4.3 %西安市未央区: 0.1 %西安市未央区: 0.1 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %通化: 0.0 %通化: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 1.4 %郑州: 1.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.7 %长沙: 0.7 %青岛: 0.3 %青岛: 0.3 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他Central DistrictChinaFranceIndiaTaiwan, ChinaUnited States[]三亚三明上海东莞中卫临汾临沂丹东佛山保定元朗新墟六安兰州兰辛凤凰城加利福尼亚州包头北京北京市北海十堰南京南充南昌南通南阳台北台州台湾省合肥呼和浩特咸阳哈尔滨哥伦布商洛嘉兴大庆大理大连天津太原威海安康安徽宜春宝鸡宿州宿迁巴中巴彦淖尔常州常德广安广州广西壮族自治区南宁广西壮族自治区桂林库比蒂诺延安张家口张家口市张掖徐州成都扬州新乡新疆维吾尔自治区哈密无锡昆明晋城朝阳杭州杭州市格兰特县榆林武汉池州沈阳法尔肯施泰因洛杉矶洛阳济南海口淮南淮安深圳温州渭南湖州湘潭湛江滁州漯河潮州烟台焦作玉林益阳盐城石家庄福州绍兴绵阳美国伊利诺斯芝加哥舟山芒廷维尤芝加哥苏州荆门莆田莱芜葫芦岛衡水衢州西宁西安西安市未央区西安市鄠邑区贵港贵阳赣州运城连云港通化邢台邯郸郑州重庆金华长春长沙青岛香港香港特别行政区马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2428) PDF downloads(199) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint