Volume 8 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
YANG Yue, YE Xingwei, ZHANG Fangzheng, et al. Broadband LFM radar imaging system based on microwave photonic I/Q de-chirping[J]. Journal of Radars, 2019, 8(2): 224–231. doi: 10.12000/JR19002
Citation: YANG Yue, YE Xingwei, ZHANG Fangzheng, et al. Broadband LFM radar imaging system based on microwave photonic I/Q de-chirping [J]. Journal of Radars, 2019, 8(2): 224–231. doi: 10.12000/JR19002

Broadband LFM Radar Imaging System Based on Microwave Photonic I/Q De-chirping

DOI: 10.12000/JR19002
Funds:  The National Natural Science Foundation of China (61871214), The National Natural Science Foundation of Jiangsu Province (BK20180066)
More Information
  • Corresponding author: ZHANG Fangzheng, zhangfangzheng@nuaa.edu.cn
  • Received Date: 2019-01-02
  • Rev Recd Date: 2019-03-11
  • Available Online: 2019-04-09
  • Publish Date: 2019-04-01
  • We propose a novel scheme of broadband LFM radar imaging system based on microwave photonic I/Q de-chirping. In the transmitter, a broadband linear frequency modulated signal is generated by photonic frequency-doubling. In the receiver, echoes reflected from the target are simultaneously sent to a couple of modulators in two polarization states. After the bias voltage of the corresponding modulator is adjusted to introduce a 90° phase difference, photonic I/Q de-chirping reception of radar echoes is achieved. The proposed radar is capable of real-time high-resolution detection and can distinguish the target on both sides of a reference point. The range ambiguity problem caused by image interference in current radar with photonic de-chirping reception is solved. In this study, first, the necessity of I/Q de-chirping is demonstrated. Then, the structure and principle of the proposed photonic-based radar are introduced. A K-band radar with a bandwidth of 8 GHz is established, and an experiment on target detection and inverse synthetic aperture radar imaging is conducted. Results show that the system can effectively suppress the interference from image frequencies.

     

  • loading
  • [1]
    潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
    [2]
    ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
    [3]
    XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, California, 2017: 1–2. doi: 10.1364/CLEO_AT.2017.JW2A.144.
    [4]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [5]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
    [6]
    ZHOU Pei, ZHANG Fangzheng, GUO Qingshui, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460–18467. doi: 10.1364/OE.24.018460
    [7]
    TONG Yitian, HAN Daming, CHENG Ran, et al. Photonics-based coherent wideband linear frequency modulation pulsed signal generation[J]. Optics Letter, 2018, 43(5): 1023–1026. doi: 10.1364/OL.43.001023
    [8]
    MIDDLETON C, MEREDITH S, PEACH R, et al. Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization[C]. Proceedings of 2011 IEEE Avionics, Fiber- Optics and Photonics Technology Conference, San Diego, CA, USA, 2011: 115–116. doi: 10.1109/AVFOP.2011.6082154.
    [9]
    CHAN E H W and MINASIAN R A. Microwave photonic downconversion using phase modulators in a sagnac loop interferometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3500208. doi: 10.1109/JSTQE.2013.2263119
    [10]
    GAO Yongsheng, WEN Aijun, ZHANG Huixing, et al. An efficient photonic mixer with frequency doubling based on a dual-parallel MZM[J]. Optics Communications, 2014, 321: 11–15. doi: 10.1016/j.optcom.2014.01.065
    [11]
    YE Xingwei, ZHANG Fangzheng, and PAN Shilong. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements[J]. Optics Letters, 2016, 41(17): 3956–3959. doi: 10.1364/OL.41.003956
    [12]
    LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [13]
    ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [14]
    PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digitalto-analong comverter[J]. Opticis Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
    [15]
    ZHANG Fangzheng, GUO Qingshui, and PAN Shilong. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing[J]. Scientific Reports, 2017, 7: 13848. doi: 10.1038/s41598-017-14306-y
    [16]
    ZHANG Fangzheng, GUO Qingshui, ZHANG Ying, et al. Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target[J]. Chinese Optics Letters, 2017, 15(11): 112801. doi: 10.3788/col201715.112801
    [17]
    ZHANG Fangzheng, GAO Bingdong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
    [18]
    YE Xingwei, ZHANG Fangzheng, YANG Yue, et al. Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging[C]. Proceedings of 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018: 1–4. doi: 10.1109/MWP.2018.8552850.
    [19]
    MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
    [20]
    GAO Yongshen, WEN Aijun, ZHANG Wu, et al. Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4513–4525. doi: 10.1109/tmtt.2017.2695184
    [21]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. 2nd ed., New York: McGraw-Hill, 2014: 87–112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3417) PDF downloads(321) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint