Citation: | |
[1] |
潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
|
[2] |
ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
|
[3] |
XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, California, 2017: 1–2. doi: 10.1364/CLEO_AT.2017.JW2A.144.
|
[4] |
GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
|
[5] |
GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
|
[6] |
ZHOU Pei, ZHANG Fangzheng, GUO Qingshui, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460–18467. doi: 10.1364/OE.24.018460
|
[7] |
TONG Yitian, HAN Daming, CHENG Ran, et al. Photonics-based coherent wideband linear frequency modulation pulsed signal generation[J]. Optics Letter, 2018, 43(5): 1023–1026. doi: 10.1364/OL.43.001023
|
[8] |
MIDDLETON C, MEREDITH S, PEACH R, et al. Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization[C]. Proceedings of 2011 IEEE Avionics, Fiber- Optics and Photonics Technology Conference, San Diego, CA, USA, 2011: 115–116. doi: 10.1109/AVFOP.2011.6082154.
|
[9] |
CHAN E H W and MINASIAN R A. Microwave photonic downconversion using phase modulators in a sagnac loop interferometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3500208. doi: 10.1109/JSTQE.2013.2263119
|
[10] |
GAO Yongsheng, WEN Aijun, ZHANG Huixing, et al. An efficient photonic mixer with frequency doubling based on a dual-parallel MZM[J]. Optics Communications, 2014, 321: 11–15. doi: 10.1016/j.optcom.2014.01.065
|
[11] |
YE Xingwei, ZHANG Fangzheng, and PAN Shilong. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements[J]. Optics Letters, 2016, 41(17): 3956–3959. doi: 10.1364/OL.41.003956
|
[12] |
LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
|
[13] |
ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
|
[14] |
PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digitalto-analong comverter[J]. Opticis Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
|
[15] |
ZHANG Fangzheng, GUO Qingshui, and PAN Shilong. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing[J]. Scientific Reports, 2017, 7: 13848. doi: 10.1038/s41598-017-14306-y
|
[16] |
ZHANG Fangzheng, GUO Qingshui, ZHANG Ying, et al. Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target[J]. Chinese Optics Letters, 2017, 15(11): 112801. doi: 10.3788/col201715.112801
|
[17] |
ZHANG Fangzheng, GAO Bingdong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
|
[18] |
YE Xingwei, ZHANG Fangzheng, YANG Yue, et al. Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging[C]. Proceedings of 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018: 1–4. doi: 10.1109/MWP.2018.8552850.
|
[19] |
MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
|
[20] |
GAO Yongshen, WEN Aijun, ZHANG Wu, et al. Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4513–4525. doi: 10.1109/tmtt.2017.2695184
|
[21] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. 2nd ed., New York: McGraw-Hill, 2014: 87–112.
|
[1] | LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043 |
[2] | LIU Yuzhou, CAI Tianyi, LI Yachao, SONG Xuan, WANG Xuanqi, AN Peiyun. A Range and Azimuth Combined Two-dimensional NCS Algorithm for Spaceborne-missile Bistatic Forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202-1214. doi: 10.12000/JR23144 |
[3] | REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111 |
[4] | WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101 |
[5] | LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148 |
[6] | LI Zhiyuan, GUO Jiayi, ZHANG Yueting, HUANG Lijia, LI Jie, WU Yirong. A Novel Autofocus Algorithm for Ship Targets in SAR Images Based on the Adaptive Momentum Estimation Optimizer and Space-variant Minimum Entropy Criteria[J]. Journal of Radars, 2022, 11(1): 83-94. doi: 10.12000/JR21159 |
[7] | CHEN Jianlai, XIONG Yi, XU Gang, ZHANG Junchao, YANG Degui, LIANG Buge. Nonlinear Trajectory Synthetic Aperture Radar Imaging and Autofocus Algorithm Based on Sub-image Nonlinear Chirp Scaling[J]. Journal of Radars, 2022, 11(6): 1098-1109. doi: 10.12000/JR22171 |
[8] | QIU Xiaolan, JIAO Zekun, PENG Lingxiao, CHEN Jiankun, GUO Jiayi, ZHOU Liangjiang, CHEN Longyong, DING Chibiao, XU Feng, DONG Qiulei, LYU Shouye. SARMV3D-1.0: Synthetic Aperture Radar Microwave Vision 3D Imaging Dataset[J]. Journal of Radars, 2021, 10(4): 485-498. doi: 10.12000/JR21112 |
[9] | CHEN Xiaoxiang, XING Mengdao. An Ultra-high-resolution Microwave Photonic-based SAR Image Method Based on Space-variant Motion Error Analysis[J]. Journal of Radars, 2019, 8(2): 205-214. doi: 10.12000/JR18121 |
[10] | Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103 |
[11] | Tian He, Li Daojing. Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR[J]. Journal of Radars, 2018, 7(6): 717-729. doi: 10.12000/JR18101 |
[12] | Lu Xinfei, Xia Jie, Yin Zhiping, Chen Weidong. High-resolution Radar Imaging Using 2D Deconvolution with Sparse Echo Denoising[J]. Journal of Radars, 2018, 7(3): 285-293. doi: 10.12000/JR17108 |
[13] | Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109 |
[14] | Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019 |
[15] | Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020 |
[16] | Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057 |
[17] | Guo Jiang-zhe, Zhu Dai-yin, Mao Xin-hua. FPGA Implementation of a SAR Two-dimensional Autofocus Approach[J]. Journal of Radars, 2016, 5(4): 444-452. doi: 10.12000/JR15092 |
[18] | Wu Min, Zhang Lei, Liu Songyang, Xing Mengdao. OFDM-ISAR Sparse Optimization Imaging and Motion Compensation[J]. Journal of Radars, 2016, 5(1): 72-81. doi: 10.12000/JR16017 |
[19] | Zhao Yi-chao, Zhu Yu-tao, Su Yi, Yang Meng. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging[J]. Journal of Radars, 2015, 4(5): 591-599. doi: 10.12000/JR15065 |
[20] | Wang Jian-feng, Lin Yun, Guo Sheng-long, Yu Ling-juan, Hong Wen. Circular SAR Optimization Imaging Method of Buildings[J]. Journal of Radars, 2015, 4(6): 698-707. doi: 10.12000/JR15069 |
1. | 朱雪慧, 余泽太, 覃潇潇, 杨河林. 基于动态RCS的舰船雷达回波仿真与分析. 雷达科学与技术. 2019(05): 543-549 . ![]() |