Volume 5 Issue 4
Aug.  2016
Turn off MathJax
Article Contents
Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057
Citation: Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057

Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration

DOI: 10.12000/JR16057
Funds:

The National Ministries Foundation

  • Received Date: 2016-03-15
  • Rev Recd Date: 2016-06-14
  • Publish Date: 2016-08-28
  • This study aims to enable steady and speedy acquisition of Inverse Synthetic Aperture Radar (ISAR) images using sparse echo data. To this end, a Multiple Measurement Vectors (MMV) ISAR echo model is studied. This model is then combined with the Compressive Sensing (CS) theory to realize a class of MMV fast ISAR imaging algorithms based on the Linearized Bregman Iteration (LBI). The algorithms involve four methods, and the iterative framework, application conditions, and relationship between the four methods are given. The reconstructed performance of the methods, convergence, anti-noise, and selection of regularization parameters are then compared and analyzed comprehensively. Finally, the experimental results are compared with the traditional Single Measurement Vector (SMV) ISAR imaging algorithm; this comparison shows that the proposed algorithm delivers an improved imaging quality with a low Signal-to-Noise Ratio (SNR).

     

  • loading
  • [1]
    张龙, 张磊, 邢孟道. 一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J]. 电子与信息学报, 2011, 32(9): 2263-2267. Zhang Long, Zhang Lei, and Xing Meng-dao. Development and prospect of compressive sensing[J]. Journal of Electronics Information Technology, 2011, 32(9): 2263-2267.
    [2]
    Donho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [3]
    Baraniuk R and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, USA, 2007: 128-133.
    [4]
    Zhang S S, Xiao B, and Zong Z L. Improved compressed sensing for high-resolution ISAR image reconstruction[J]. SCIENCE CHINA Information Sciences, 2014, 59(23): 2918-2926.
    [5]
    Rao W, Li G, Wang X Q, et al.. Comparison of parametric sparse recovery methods for ISAR image formation[J]. SCIENCE CHINA Information Sciences, 2014, 57(2): 11-12.
    [6]
    Zhang X H, Bai T, Meng H Y, et al.. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
    [7]
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193. Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    [8]
    Davies M E and Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1135-1146.
    [9]
    Zhao L F, Wang L, Bi G A, et al.. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
    [10]
    陈一畅, 张群, 陈校平, 等. 多重测量矢量模型下的稀疏步进频率SAR成像算法[J]. 电子与信息学报, 2014, 36(12): 2987-2993. Chen Yi-chang, Zhang Qun, Chen Xiao-ping, et al.. Imaging algorithm of sparse stepped fequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2987-2993.
    [11]
    俞翔, 朱岱寅, 张劲东, 等. 基于设计结构化Gram矩阵的ISAR运动补偿方法[J]. 电子学报, 2014, 42(3): 442-461. Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured Gram matrices[J]. Acta Electronica Sinica, 2014, 42(3): 442-461. 李少东, 陈文峰, 杨军, 等. 任意稀疏结构的多量测向量快速稀疏重构算法研究[J]. 电子学报, 2015, 43(4): 708-715.
    [12]
    Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. Study on the fast sparse recovery algorithm via multiple measurement vectors of arbitrary sparse structure[J]. Acta Electronica Sinica, 2015, 43(4): 708-715.
    [13]
    Yin W, Osher S, Goldfarb D, et al.. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.
    [14]
    Osher S, Mao Y, Dong B, et al.. Fast linearized Bregman iteration for compressive sensing and sparse denoisng[J]. Communications in Mathematical Sciences, 2011, 8(1): 93-111.
    [15]
    Cai J F, Osher S, and Shen Z W. Linearized Bregman iterations for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 226-252.
    [16]
    Yin W. Analysis and generalizations of the linearized Bregman method[J]. SIAM Journal on Imaging Sciences, 2010, 3(4): 856-877.
    [17]
    陈文峰, 李少东, 杨军. 任意稀疏结构的复稀疏信号快速重构算法及其逆合成孔径雷达成像[J]. 光电子激光, 2015, 26(4): 797-804. Chen Wen-feng, Li Shao-dong, and Yang Jun. Fast recovery algorithm for complex sparse signal with arbitrary sparse structure and its inverse synthetic aperture radar imaging[J]. Journal of Optoelectronics Laser, 2015, 26(4): 797-804.
    [18]
    李少东, 陈文峰, 杨军, 等. 一种快速复数线性Bregman迭代算法及其在ISAR成像中的应用[J]. 中国科学: 信息科学, 2015, 45(9): 1179-1196. Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. A fast complex linearized Bregman iteration algorithm and its application in ISAR imaging[J]. Scientia Sinica (Informationis), 2015, 45(9): 1179-1196.
    [19]
    Donoho D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete Computational Geometry, 2006, 35(4): 617-652.
    [20]
    田野, 毕辉, 张冰尘, 等. 相变图在稀疏微波成像变化检测降采样分析中的应用[J].电子与信息学报, 2015, 37(10): 2335-2341. Tian Ye, Bi Hui, Zhang Bing-chen, et al.. Application of phase diagram to sampling ratio analysis in sparse microwave imaging change detection[J]. Journal of Electronics Information Technology, 2015, 37(10): 2335-2341.
    [21]
    Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
    [22]
    Daubechies I, Defrise M, and De M C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
    [23]
    Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
    [24]
    张磊. 高分辨率SAR/ISAR成像及误差补偿技术研究[D]. [博士论文], 西安电子科技大学, 2012. Zhang Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph.D. dissertation], Xidian University, 2012.
    [25]
    Mohimani G H, Zadeh M B, and Jutten C. A fast approach for over-complete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    [26]
    苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J].电子与信息学报, 2014, 36(7): 1525-1531. Su Wu-ge, Wang Hong-qian, Deng Bin, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
    [27]
    Tropp J A, Gilbert A C, and Strauss M J. Simultaneous sparse approximation via greedy pursuit[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Ann Arbor, USA, 2005: 721-724.
    [28]
    Liu Z, You P, Wei X Z, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J] IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2533) PDF downloads(699) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint