Citation: | Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057 |
[1] |
张龙, 张磊, 邢孟道. 一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J]. 电子与信息学报, 2011, 32(9): 2263-2267. Zhang Long, Zhang Lei, and Xing Meng-dao. Development and prospect of compressive sensing[J]. Journal of Electronics Information Technology, 2011, 32(9): 2263-2267.
|
[2] |
Donho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
[3] |
Baraniuk R and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, USA, 2007: 128-133.
|
[4] |
Zhang S S, Xiao B, and Zong Z L. Improved compressed sensing for high-resolution ISAR image reconstruction[J]. SCIENCE CHINA Information Sciences, 2014, 59(23): 2918-2926.
|
[5] |
Rao W, Li G, Wang X Q, et al.. Comparison of parametric sparse recovery methods for ISAR image formation[J]. SCIENCE CHINA Information Sciences, 2014, 57(2): 11-12.
|
[6] |
Zhang X H, Bai T, Meng H Y, et al.. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
|
[7] |
吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193. Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
|
[8] |
Davies M E and Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1135-1146.
|
[9] |
Zhao L F, Wang L, Bi G A, et al.. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
|
[10] |
陈一畅, 张群, 陈校平, 等. 多重测量矢量模型下的稀疏步进频率SAR成像算法[J]. 电子与信息学报, 2014, 36(12): 2987-2993. Chen Yi-chang, Zhang Qun, Chen Xiao-ping, et al.. Imaging algorithm of sparse stepped fequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2987-2993.
|
[11] |
俞翔, 朱岱寅, 张劲东, 等. 基于设计结构化Gram矩阵的ISAR运动补偿方法[J]. 电子学报, 2014, 42(3): 442-461. Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured Gram matrices[J]. Acta Electronica Sinica, 2014, 42(3): 442-461. 李少东, 陈文峰, 杨军, 等. 任意稀疏结构的多量测向量快速稀疏重构算法研究[J]. 电子学报, 2015, 43(4): 708-715.
|
[12] |
Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. Study on the fast sparse recovery algorithm via multiple measurement vectors of arbitrary sparse structure[J]. Acta Electronica Sinica, 2015, 43(4): 708-715.
|
[13] |
Yin W, Osher S, Goldfarb D, et al.. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.
|
[14] |
Osher S, Mao Y, Dong B, et al.. Fast linearized Bregman iteration for compressive sensing and sparse denoisng[J]. Communications in Mathematical Sciences, 2011, 8(1): 93-111.
|
[15] |
Cai J F, Osher S, and Shen Z W. Linearized Bregman iterations for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 226-252.
|
[16] |
Yin W. Analysis and generalizations of the linearized Bregman method[J]. SIAM Journal on Imaging Sciences, 2010, 3(4): 856-877.
|
[17] |
陈文峰, 李少东, 杨军. 任意稀疏结构的复稀疏信号快速重构算法及其逆合成孔径雷达成像[J]. 光电子激光, 2015, 26(4): 797-804. Chen Wen-feng, Li Shao-dong, and Yang Jun. Fast recovery algorithm for complex sparse signal with arbitrary sparse structure and its inverse synthetic aperture radar imaging[J]. Journal of Optoelectronics Laser, 2015, 26(4): 797-804.
|
[18] |
李少东, 陈文峰, 杨军, 等. 一种快速复数线性Bregman迭代算法及其在ISAR成像中的应用[J]. 中国科学: 信息科学, 2015, 45(9): 1179-1196. Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. A fast complex linearized Bregman iteration algorithm and its application in ISAR imaging[J]. Scientia Sinica (Informationis), 2015, 45(9): 1179-1196.
|
[19] |
Donoho D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete Computational Geometry, 2006, 35(4): 617-652.
|
[20] |
田野, 毕辉, 张冰尘, 等. 相变图在稀疏微波成像变化检测降采样分析中的应用[J].电子与信息学报, 2015, 37(10): 2335-2341. Tian Ye, Bi Hui, Zhang Bing-chen, et al.. Application of phase diagram to sampling ratio analysis in sparse microwave imaging change detection[J]. Journal of Electronics Information Technology, 2015, 37(10): 2335-2341.
|
[21] |
Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
|
[22] |
Daubechies I, Defrise M, and De M C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
|
[23] |
Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
|
[24] |
张磊. 高分辨率SAR/ISAR成像及误差补偿技术研究[D]. [博士论文], 西安电子科技大学, 2012. Zhang Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph.D. dissertation], Xidian University, 2012.
|
[25] |
Mohimani G H, Zadeh M B, and Jutten C. A fast approach for over-complete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
|
[26] |
苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J].电子与信息学报, 2014, 36(7): 1525-1531. Su Wu-ge, Wang Hong-qian, Deng Bin, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
|
[27] |
Tropp J A, Gilbert A C, and Strauss M J. Simultaneous sparse approximation via greedy pursuit[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Ann Arbor, USA, 2005: 721-724.
|
[28] |
Liu Z, You P, Wei X Z, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J] IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
|