Volume 8 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121
Citation: CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121

An Ultra-high-resolution Microwave Photonic-based SAR Image Method Based on Space-variant Motion Error Analysis

DOI: 10.12000/JR18121
Funds:  The State Key Research Development Program (2017YFC1405600), The Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61621005)
More Information
  • Corresponding author: CHEN Xiaoxiang, graceful1900@163.com
  • Received Date: 2018-12-29
  • Rev Recd Date: 2019-03-20
  • Available Online: 2019-04-11
  • Publish Date: 2019-04-01
  • An ultrahigh-resolution microwave photonic-based Synthetic Aperture Radar (SAR) imaging method based on space-variant motion error analysis is proposed to solve the influence of space-variant motion error on microwave photonic-based SAR imaging. First, the judgment rules of the influence of space-variant motion error are proposed to analyze the residual space-variant motion error. Second, on the basis of the different judgment results of microwave photonic-based SAR system conditions, the corresponding imaging process is proposed. Finally, the proposed judgment rules and imaging method are verified by point simulation, and the measured data of the 10 GHz microwave photonic-based ultrahigh-resolution SAR are analyzed and imaged. The experimental results show the effectiveness of the proposed method.

     

  • loading
  • [1]
    FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069
    [2]
    MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 526–530. doi: 10.1109/LGRS.2011.2173291
    [3]
    YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/LGRS.2012.2196676
    [4]
    LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [5]
    LAGHEZZA F, SCOTTI F, ONORI D, et al. ISAR imaging of non-cooperative targets via dual band photonics-based radar system[C]. Proceedings of the 17th International Radar Symposium, Krakow, Poland, 2016: 1–4. doi: 10.1109/IRS.2016.7497319.
    [6]
    WO Jianghai, WANG Anle, ZHANG Jin, et al. Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator[C]. Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, Singapore, 2017: 1–2. doi: 10.1109/OECC.2017.8114928.
    [7]
    LI Yake, LIU Chang, WANG Yanfei, et al. A robust motion error estimation method based on raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2780–2790. doi: 10.1109/TGRS.2011.2175737
    [8]
    邢孟道, 保铮. 基于运动参数估计的SAR成像[J]. 电子学报, 2001, 29(12A): 1824–1828. doi: 10.3321/j.issn:0372-2112.2001.z1.023

    XING Mengdao and BAO Zheng. Motion parameter estimation based SAR imaging[J]. Acta Electronica Sinica, 2001, 29(12A): 1824–1828. doi: 10.3321/j.issn:0372-2112.2001.z1.023
    [9]
    EICHEL P H and JAKOWATZ C V. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Optics Letters, 1989, 14(20): 1101–1103. doi: 10.1364/OL.14.001101
    [10]
    XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112
    [11]
    ZHU Daiyin, JIANG Rui, MAO Xinhua, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468–488. doi: 10.1109/taes.2013.6404115
    [12]
    CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060
    [13]
    YANG Mingdong, ZHU Daiyin, and SONG Wei. Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J]. Electronics Letters, 2015, 51(14): 1108–1110. doi: 10.1049/el.2015.1350
    [14]
    ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/JSTARS.2016.2577588
    [15]
    CANTALLOUBE H. SAR retrieval of a ship vertical profile from her roll and pitch motion[C]. Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [16]
    HÖGBOM J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement, 1974, 15(3): 417–426.
    [17]
    唐江文, 邓云凯, 王宇, 等. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368–375. doi: 10.12000/JR16053

    TANG Jiangwen, DENG Yunkai, WANG Yu, et al. High-resolution slide spotlight SAR imaging by BP algorithm and heterogeneous parallel implementation[J]. Journal of Radars, 2017, 6(4): 368–375. doi: 10.12000/JR16053
    [18]
    WEHNER D R. High Resolution Radar[M]. Norwood, MA: Artech House, 1987.
    [19]
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4088) PDF downloads(263) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint