YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, et al. Trajectory planning method for UAV-through-the-wall 3D SAR based on a genetic algorithm[J]. Journal of Radars, 2024, 13(4): 731–746. doi: 10.12000/JR24068
Citation: YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, et al. Trajectory planning method for UAV-through-the-wall 3D SAR based on a genetic algorithm[J]. Journal of Radars, 2024, 13(4): 731–746. doi: 10.12000/JR24068

Trajectory Planning Method for UAV-through-the-wall 3D SAR Based on a Genetic Algorithm

DOI: 10.12000/JR24068 CSTR: 32380.14.JR24068
Funds:  The National Natural Science Foundation of China (62101042)
More Information
  • Corresponding author: ZHONG Shichao, zhongshichao16@bit.edu.cn
  • Received Date: 2024-04-19
  • Rev Recd Date: 2024-06-13
  • Available Online: 2024-06-19
  • Publish Date: 2024-07-02
  • Due to height limitations, the traditional handheld or vehicle-mounted Through-the-Wall Radar (TWR) cannot provide the perspective imaging of internal targets in urban high-rise buildings. Unmanned Aerial Vehicle-TWR (UAV-TWR) offers flexibility, efficiency, convenience, and no height limitations, allowing for large-scale three-Dimensional (3D) penetration detection of urban high-rise buildings. While the multibaseline scanning mode is widely used in 3D tomographic Synthetic Aperture Radar (SAR) imaging to provide resolution in the altitude direction, it often suffers from the grating lobe problem owing to under-sampling in the altitude spatial domain. Therefore, this paper proposes a trajectory planning algorithm for UAV-through-the-wall 3D SAR imaging based on a genetic algorithm to address this issue. By nonuniformizing flight trajectories, the periodic radar echo energy superposition is weakened, thereby suppressing grating lobes to achieve better imaging quality. The proposed algorithm combines the inherent relationship between the flight distance and TWR imaging quality and establishes a cost function for UAV-TWR trajectory planning. We use the genetic algorithm to encode genes for three typical flight trajectory control points and optimize the population and individuals through gene hybridization and mutation. The optimal flight trajectory for each of the three flight modes is selected by minimizing the cost function. Compared with the traditional equidistant multibaseline flight mode, the imaging results from simulations and measured data show that the proposed algorithm significantly suppresses the grating lobe effect of targets. In addition, oblique UAV flight trajectories are significantly shortened, improving the efficiency of through-the-wall SAR imaging.

     

  • [1]
    GAO Weicheng, YANG Xiaopeng, QU Xiaodong, et al. TWR-MCAE: A data augmentation method for through-the-wall radar human motion recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5118617. doi: 10.1109/TGRS.2022.3213748.
    [2]
    YANG Xiaopeng, GAO Weicheng, QU Xiaodong, et al. A lightweight multiscale neural network for indoor human activity recognition based on macro and micro-Doppler features[J]. IEEE Internet of Things Journal, 2023, 10(24): 21836–21854. doi: 10.1109/JIOT.2023.3301519.
    [3]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [4]
    UNAL M, CALISKAN A, TURK A S, et al. Subsurface and through-wall SAR imaging techniques for ground penetrating radar[J]. Технология и Конструирование в Электронной Аппаратуре, 2013(6): 32–36. doi: 10.15222/tkea2013.6.32.
    [5]
    WANG Yazhou and FATHY A E. Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1986–2000. doi: 10.1109/tgrs.2011.2170694.
    [6]
    SÉVIGNY P. Joint through-wall 3-D radar imaging and motion detection using a stop-and-go SAR trajectory[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. doi: 10.1109/RADAR.2016.7485325.
    [7]
    LIU Jiangang, JIA Yong, KONG Lingjiang, et al. MIMO through-wall radar 3-D imaging of a human body in different postures[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(7): 849–859. doi: 10.1080/09205071.2016.1159996.
    [8]
    KONG Lingjiang, CUI Guolong, YANG Xiaobo, et al. Three-dimensional human imaging for through-the-wall radar[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4. doi: 10.1109/RADAR.2009.4976932.
    [9]
    ZHAO Yikun, YANG Wenfu, LI Yinchuan, et al. Multi-path suppression algorithm for through-the-wall imaging[J]. The Journal of Engineering, 2019, 2019(19): 5629–5633. doi: 10.1049/joe.2019.0126.
    [10]
    FREY O and MEIER E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L- and P-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660–3664. doi: 10.1109/tgrs.2011.2128875.
    [11]
    DOGARU T, PHELAN B, and LIAO Dahan. Imaging of buried targets using UAV-based, ground penetrating, synthetic aperture radar[C]. SPIE 11003, Radar Sensor Technology XXIII, Baltimore, USA, 2019. doi: 10.1117/12.2519116.
    [12]
    ANDRE D, FAULKNER B, and FINNIS M. Low-frequency 3D synthetic aperture radar for the remote intelligence of building interiors[J]. Electronics Letters, 2017, 53(15): 984–987. doi: 10.1049/el.2017.1584.
    [13]
    廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031.

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031.
    [14]
    ALISTARH C A, PODILCHAK S K, RE P D H, et al. Sectorized FMCW MIMO radar by modular design with non-uniform sparse arrays[J]. IEEE Journal of Microwaves, 2022, 2(3): 442–460. doi: 10.1109/jmw.2022.3165401.
    [15]
    FENG Chen, YE Haojian, HONG Hong, et al. A hybrid algorithm for sparse antenna array optimization of MIMO radar[C]. 2022 IEEE Radio and Wireless Symposium, Las Vegas, USA, 2022: 115–117. doi: 10.1109/RWS53089.2022.9719968.
    [16]
    HARTMANN F and OSTERMANN J. Investigation of the effect of the flight path on the three dimensional locatability of targets[C]. 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, 2021: 1–6. doi: 10.1109/APSAR52370.2021.9688372.
    [17]
    BROWN A and ANDERSON D. Trajectory optimization for high-altitude long-endurance UAV maritime radar surveillance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2406–2421. doi: 10.1109/taes.2019.2949384.
    [18]
    DROZDOWICZ J and SAMCZYNSKI P. Drone-based 3D synthetic aperture radar imaging with trajectory optimization[J]. Sensors, 2022, 22(18): 6990. doi: 10.3390/s22186990.
    [19]
    SAEEDI J and FAEZ K. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging[J]. Multidimensional Systems and Signal Processing, 2016, 27(2): 411–431. doi: 10.1007/s11045-014-0308-1.
    [20]
    JIAO Bowen, WANG Zuyi, and XU Li. Control strategy and flight trajectory optimization strategy based on improved De Casteljau’s algorithm for indoor drone[C]. 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 2021: 4633–4638. doi: 10.1109/CCDC52312.2021.9602413.
    [21]
    LAHMERI M A, GHANEM W, KNILL C, et al. Trajectory and resource optimization for UAV synthetic aperture radar[C]. 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 2022: 897–903. doi: 10.1109/GCWkshps56602.2022.10008658.
    [22]
    TASHTARIAN G and MAJEDI M S. Grating lobes reduction in linear arrays composed of subarrays using PSO[C]. 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 2019: 1–6. doi: 10.1109/ISNCC.2019.8909108.
    [23]
    INDU N, SINGH R P, CHOUDHARY H R, et al. Trajectory design for UAV-to-ground communication with energy optimization using genetic algorithm for agriculture application[J]. IEEE Sensors Journal, 2021, 21(16): 17548–17555. doi: 10.1109/jsen.2020.3046463.
    [24]
    王楚涵, 李小龙, 望明星, 等. 一种机载分布式MIMO雷达节点位置与路径分步优化管控方法[J]. 信号处理, 2024, 40(7): 1249–1265. doi: 10.16798/j.issn.1003-0530.2024.07.007.

    WANG Chuhan, LI Xiaolong, WANG Mingxing, et al. A stepwise optimization and control method for node location and path of airborne distributed MIMO radar[J]. Journal of Signal Processing, 2024, 40(7): 1249–1265. doi: 10.16798/j.issn.1003-0530.2024.07.007.
    [25]
    WANG Xiaofeng, RUAN Yaduan, and ZHANG Xinggan. Accuracy improvement of high-resolution wide-swath spaceborne synthetic aperture radar imaging with low pule repetition frequency[J]. Remote Sensing, 2023, 15(15): 3811. doi: 10.3390/rs15153811.
    [26]
    WARREN C, GIANNOPOULOS A, GRAY A, et al. A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software[J]. Computer Physics Communications, 2019, 237: 208–218. doi: 10.1016/j.cpc.2018.11.007.
  • Relative Articles

    [1]YUAN Weijie, WU Jun, SHI Yuye. Multi-UAV Collaborative Covert Communications: An ISAC-Based Approach[J]. Journal of Radars. doi: 10.12000/JR25018
    [2]REN Hang, SUN Zhichao, YANG Jianyu, WU Junjie. A Task Allocation Method for Swarm UAV SAR Based on Low Redundancy Chromosome Encoding[J]. Journal of Radars. doi: 10.12000/JR24218
    [3]LIANG Xiao, YE Shengbo, SONG Chenyang, YUAN Yubing, ZHANG Qunying, LIU Xiaojun, JIANG Hejun, LI Hong. Automatic Multitarget Detection Method Based on Distributed Through-wall Radar[J]. Journal of Radars, 2025, 14(1): 28-44. doi: 10.12000/JR24127
    [4]LI Zhi, TANG Chengyao, DAI Yongpeng, JIN Tian. Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar[J]. Journal of Radars, 2025, 14(1): 62-72. doi: 10.12000/JR24128
    [5]YANG Xiaopeng, GAO Weicheng, QU Xiaodong. Human Anomalous Gait Termination Recognition via Through-the-wall Radar Based on Micro-Doppler Corner Features and Non-Local Mechanism[J]. Journal of Radars, 2024, 13(1): 68-86. doi: 10.12000/JR23181
    [6]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [7]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [8]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [9]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [10]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [11]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [16]Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Bai Yang, Wu Yang, Yin Hongcheng, Que Xiaofeng. Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [19]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(1)

    1. 赵瑞琳. 植保多旋翼无人机在不规则区域的航迹规划. 科技资讯. 2025(03): 189-191 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040100200300400
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.2 %FULLTEXT: 20.2 %META: 62.8 %META: 62.8 %PDF: 17.1 %PDF: 17.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 1.0 %其他: 1.0 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %Ecole-Valentin: 0.2 %Ecole-Valentin: 0.2 %Falls Church: 0.3 %Falls Church: 0.3 %Herndon: 0.1 %Herndon: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %上海: 3.0 %上海: 3.0 %东莞: 0.1 %东莞: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.3 %佛山: 0.3 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %列克星敦: 0.1 %列克星敦: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 18.2 %北京: 18.2 %十堰: 0.2 %十堰: 0.2 %南京: 3.9 %南京: 3.9 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %印多尔: 0.1 %印多尔: 0.1 %厦门: 0.3 %厦门: 0.3 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.9 %合肥: 0.9 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.8 %嘉兴: 0.8 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %大理: 0.3 %大理: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.1 %大阪: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %宁波: 0.1 %宁波: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.1 %安顺: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.8 %开封: 0.8 %张家口: 1.0 %张家口: 1.0 %张家界: 0.2 %张家界: 0.2 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 2.9 %成都: 2.9 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.9 %昆明: 1.9 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.1 %本溪: 0.1 %杭州: 2.2 %杭州: 2.2 %格林维尔: 0.1 %格林维尔: 0.1 %武汉: 0.6 %武汉: 0.6 %永州: 0.1 %永州: 0.1 %汕头: 0.4 %汕头: 0.4 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河源: 0.2 %河源: 0.2 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.2 %深圳: 2.2 %温州: 0.5 %温州: 0.5 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.4 %珠海: 0.4 %白城: 0.1 %白城: 0.1 %百色: 0.2 %百色: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %纽约: 0.6 %纽约: 0.6 %绵阳: 1.4 %绵阳: 1.4 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.3 %莫斯科: 0.3 %营口: 0.1 %营口: 0.1 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 3.2 %西宁: 3.2 %西安: 3.8 %西安: 3.8 %诺沃克: 5.5 %诺沃克: 5.5 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %通辽: 0.1 %通辽: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 1.1 %重庆: 1.1 %金昌: 0.1 %金昌: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 2.2 %长沙: 2.2 %阜新: 0.1 %阜新: 0.1 %阿什本: 0.2 %阿什本: 0.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %陇南: 0.1 %陇南: 0.1 %陵水: 0.1 %陵水: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.2 %首尔特别: 0.2 %香港: 0.2 %香港: 0.2 %马尔默: 0.1 %马尔默: 0.1 %马尼拉: 0.2 %马尼拉: 0.2 %驻马店: 0.1 %驻马店: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他Central DistrictChinaEcole-ValentinFalls ChurchHerndonRussian Federation上海东莞伦敦佛山六安兰州内江列克星敦加利福尼亚州北京十堰南京南宁南昌南通印多尔厦门双鸭山台北台州合肥吉安呼和浩特哈尔滨哥伦布嘉兴圣克拉拉圣安东尼奥大理大连大阪天津太原威海宁波安康安顺宜春宣城宿州常州常德广安广州库比蒂诺延安开封张家口张家界德里德黑兰慕尼黑成都扬州揭阳新乡新余无锡昆明朝阳本溪杭州格林维尔武汉永州汕头江门沈阳沧州河源洛杉矶洛阳济南海口淄博淮南深圳温州湖州湘潭漯河潍坊烟台珠海白城百色石家庄福州纽约绵阳罗马芒廷维尤芝加哥苏州莫斯科营口衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州运城通辽遵义邯郸邵阳郑州重庆金昌长春长沙阜新阿什本阿姆斯特丹陇南陵水青岛首尔特别香港马尔默马尼拉驻马店黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1178) PDF downloads(321) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint