Volume 13 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, et al. Trajectory planning method for UAV-through-the-wall 3D SAR based on a genetic algorithm[J]. Journal of Radars, 2024, 13(4): 731–746. doi: 10.12000/JR24068
Citation: YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, et al. Trajectory planning method for UAV-through-the-wall 3D SAR based on a genetic algorithm[J]. Journal of Radars, 2024, 13(4): 731–746. doi: 10.12000/JR24068

Trajectory Planning Method for UAV-through-the-wall 3D SAR Based on a Genetic Algorithm

DOI: 10.12000/JR24068
Funds:  The National Natural Science Foundation of China (62101042)
More Information
  • Corresponding author: ZHONG Shichao, zhongshichao16@bit.edu.cn
  • Received Date: 2024-04-19
  • Rev Recd Date: 2024-06-13
  • Available Online: 2024-06-19
  • Publish Date: 2024-07-02
  • Due to height limitations, the traditional handheld or vehicle-mounted Through-the-Wall Radar (TWR) cannot provide the perspective imaging of internal targets in urban high-rise buildings. Unmanned Aerial Vehicle-TWR (UAV-TWR) offers flexibility, efficiency, convenience, and no height limitations, allowing for large-scale three-Dimensional (3D) penetration detection of urban high-rise buildings. While the multibaseline scanning mode is widely used in 3D tomographic Synthetic Aperture Radar (SAR) imaging to provide resolution in the altitude direction, it often suffers from the grating lobe problem owing to under-sampling in the altitude spatial domain. Therefore, this paper proposes a trajectory planning algorithm for UAV-through-the-wall 3D SAR imaging based on a genetic algorithm to address this issue. By nonuniformizing flight trajectories, the periodic radar echo energy superposition is weakened, thereby suppressing grating lobes to achieve better imaging quality. The proposed algorithm combines the inherent relationship between the flight distance and TWR imaging quality and establishes a cost function for UAV-TWR trajectory planning. We use the genetic algorithm to encode genes for three typical flight trajectory control points and optimize the population and individuals through gene hybridization and mutation. The optimal flight trajectory for each of the three flight modes is selected by minimizing the cost function. Compared with the traditional equidistant multibaseline flight mode, the imaging results from simulations and measured data show that the proposed algorithm significantly suppresses the grating lobe effect of targets. In addition, oblique UAV flight trajectories are significantly shortened, improving the efficiency of through-the-wall SAR imaging.

     

  • loading
  • [1]
    GAO Weicheng, YANG Xiaopeng, QU Xiaodong, et al. TWR-MCAE: A data augmentation method for through-the-wall radar human motion recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5118617. doi: 10.1109/TGRS.2022.3213748.
    [2]
    YANG Xiaopeng, GAO Weicheng, QU Xiaodong, et al. A lightweight multiscale neural network for indoor human activity recognition based on macro and micro-Doppler features[J]. IEEE Internet of Things Journal, 2023, 10(24): 21836–21854. doi: 10.1109/JIOT.2023.3301519.
    [3]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [4]
    UNAL M, CALISKAN A, TURK A S, et al. Subsurface and through-wall SAR imaging techniques for ground penetrating radar[J]. Технология и Конструирование в Электронной Аппаратуре, 2013(6): 32–36. doi: 10.15222/tkea2013.6.32.
    [5]
    WANG Yazhou and FATHY A E. Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1986–2000. doi: 10.1109/tgrs.2011.2170694.
    [6]
    SÉVIGNY P. Joint through-wall 3-D radar imaging and motion detection using a stop-and-go SAR trajectory[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. doi: 10.1109/RADAR.2016.7485325.
    [7]
    LIU Jiangang, JIA Yong, KONG Lingjiang, et al. MIMO through-wall radar 3-D imaging of a human body in different postures[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(7): 849–859. doi: 10.1080/09205071.2016.1159996.
    [8]
    KONG Lingjiang, CUI Guolong, YANG Xiaobo, et al. Three-dimensional human imaging for through-the-wall radar[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4. doi: 10.1109/RADAR.2009.4976932.
    [9]
    ZHAO Yikun, YANG Wenfu, LI Yinchuan, et al. Multi-path suppression algorithm for through-the-wall imaging[J]. The Journal of Engineering, 2019, 2019(19): 5629–5633. doi: 10.1049/joe.2019.0126.
    [10]
    FREY O and MEIER E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L- and P-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660–3664. doi: 10.1109/tgrs.2011.2128875.
    [11]
    DOGARU T, PHELAN B, and LIAO Dahan. Imaging of buried targets using UAV-based, ground penetrating, synthetic aperture radar[C]. SPIE 11003, Radar Sensor Technology XXIII, Baltimore, USA, 2019. doi: 10.1117/12.2519116.
    [12]
    ANDRE D, FAULKNER B, and FINNIS M. Low-frequency 3D synthetic aperture radar for the remote intelligence of building interiors[J]. Electronics Letters, 2017, 53(15): 984–987. doi: 10.1049/el.2017.1584.
    [13]
    廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031.

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031.
    [14]
    ALISTARH C A, PODILCHAK S K, RE P D H, et al. Sectorized FMCW MIMO radar by modular design with non-uniform sparse arrays[J]. IEEE Journal of Microwaves, 2022, 2(3): 442–460. doi: 10.1109/jmw.2022.3165401.
    [15]
    FENG Chen, YE Haojian, HONG Hong, et al. A hybrid algorithm for sparse antenna array optimization of MIMO radar[C]. 2022 IEEE Radio and Wireless Symposium, Las Vegas, USA, 2022: 115–117. doi: 10.1109/RWS53089.2022.9719968.
    [16]
    HARTMANN F and OSTERMANN J. Investigation of the effect of the flight path on the three dimensional locatability of targets[C]. 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, 2021: 1–6. doi: 10.1109/APSAR52370.2021.9688372.
    [17]
    BROWN A and ANDERSON D. Trajectory optimization for high-altitude long-endurance UAV maritime radar surveillance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2406–2421. doi: 10.1109/taes.2019.2949384.
    [18]
    DROZDOWICZ J and SAMCZYNSKI P. Drone-based 3D synthetic aperture radar imaging with trajectory optimization[J]. Sensors, 2022, 22(18): 6990. doi: 10.3390/s22186990.
    [19]
    SAEEDI J and FAEZ K. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging[J]. Multidimensional Systems and Signal Processing, 2016, 27(2): 411–431. doi: 10.1007/s11045-014-0308-1.
    [20]
    JIAO Bowen, WANG Zuyi, and XU Li. Control strategy and flight trajectory optimization strategy based on improved De Casteljau’s algorithm for indoor drone[C]. 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 2021: 4633–4638. doi: 10.1109/CCDC52312.2021.9602413.
    [21]
    LAHMERI M A, GHANEM W, KNILL C, et al. Trajectory and resource optimization for UAV synthetic aperture radar[C]. 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 2022: 897–903. doi: 10.1109/GCWkshps56602.2022.10008658.
    [22]
    TASHTARIAN G and MAJEDI M S. Grating lobes reduction in linear arrays composed of subarrays using PSO[C]. 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 2019: 1–6. doi: 10.1109/ISNCC.2019.8909108.
    [23]
    INDU N, SINGH R P, CHOUDHARY H R, et al. Trajectory design for UAV-to-ground communication with energy optimization using genetic algorithm for agriculture application[J]. IEEE Sensors Journal, 2021, 21(16): 17548–17555. doi: 10.1109/jsen.2020.3046463.
    [24]
    王楚涵, 李小龙, 望明星, 等. 一种机载分布式MIMO雷达节点位置与路径分步优化管控方法[J]. 信号处理, 2024, 40(7): 1249–1265. doi: 10.16798/j.issn.1003-0530.2024.07.007.

    WANG Chuhan, LI Xiaolong, WANG Mingxing, et al. A stepwise optimization and control method for node location and path of airborne distributed MIMO radar[J]. Journal of Signal Processing, 2024, 40(7): 1249–1265. doi: 10.16798/j.issn.1003-0530.2024.07.007.
    [25]
    WANG Xiaofeng, RUAN Yaduan, and ZHANG Xinggan. Accuracy improvement of high-resolution wide-swath spaceborne synthetic aperture radar imaging with low pule repetition frequency[J]. Remote Sensing, 2023, 15(15): 3811. doi: 10.3390/rs15153811.
    [26]
    WARREN C, GIANNOPOULOS A, GRAY A, et al. A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software[J]. Computer Physics Communications, 2019, 237: 208–218. doi: 10.1016/j.cpc.2018.11.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1008) PDF downloads(301) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint