Volume 13 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191
Citation: HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191

Physically Explainable Intelligent Perception and Application of SAR Target Characteristics Based on Time-frequency Analysis

DOI: 10.12000/JR23191
Funds:  The National Natural Science Foundation of China (62101459), China Postdoctoral Science Foundation (BX2021248)
More Information
  • The current state of intelligent target recognition approaches for Synthetic Aperture Radar (SAR) continues to experience challenges owing to their limited robustness, generalizability, and interpretability. Currently, research focuses on comprehending the microwave properties of SAR targets and integrating them with advanced deep learning algorithms to achieve effective and resilient SAR target recognition. The computational complexity of SAR target characteristic-inversion approaches is often considerable, rendering their integration with deep neural networks for achieving real-time predictions in an end-to-end manner challenging. To facilitate the utilization of the physical properties of SAR targets in intelligent recognition tasks, advancing the development of microwave physical property sensing technologies that are efficient, intelligent, and interpretable is imperative. This paper focuses on the nonstationary nature of high-resolution SAR targets and proposes an improved intelligent approach for analyzing target characteristics using time-frequency analysis. This method enhances the processing flow and calculation efficiency, making it more suitable for SAR targets. It is integrated with a deep neural network for SAR target recognition to achieve consistent performance improvement. The proposed approach exhibits robust generalization capabilities and notable computing efficiency, enabling the acquisition of classification outcomes of the SAR target characteristics that are readily interpretable from a physical standpoint. The enhancement in the performance of the target recognition algorithm is comparable to that achieved by the attribute scattering center model.

     

  • loading
  • [1]
    CHEN Keyang, PAN Zongxu, HUANG Zhongling, et al. Learning from reliable unlabeled samples for semi-supervised SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4512205. doi: 10.1109/LGRS.2022.3197892.
    [2]
    CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [3]
    ZENG Zhiqiang, SUN Jinping, HAN Zhu, et al. SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228618. doi: 10.1109/TGRS.2022.3177323.
    [4]
    金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
    [5]
    DATCU M, HUANG Zhongling, ANGHEL A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 8–25. doi: 10.1109/MGRS.2023.3237465.
    [6]
    黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
    [7]
    文贡坚, 马聪慧, 丁柏圆, 等. 基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法[J]. 雷达学报, 2020, 9(4): 608–621. doi: 10.12000/JR20099.

    WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099.
    [8]
    郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.

    GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
    [9]
    KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318–2331. doi: 10.1109/TKDE.2017.2720168.
    [10]
    VON RUEDEN L, MAYER S, BECKH K, et al. Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 614–633. doi: 10.1109/TKDE.2021.3079836.
    [11]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720.
    [12]
    LI Yi, DU Lan, and WEI Di. Multiscale CNN based on component analysis for SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211212. doi: 10.1109/TGRS.2021.3100137.
    [13]
    INKAWHICH N, DAVIS E, MAJUMDER U, et al. Advanced techniques for robust SAR ATR: Mitigating noise and phase errors[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 844–849. doi: 10.1109/RADAR42522.2020.9114784.
    [14]
    PENG Bowen, PENG Bo, ZHOU Jie, et al. Scattering model guided adversarial examples for SAR target recognition: Attack and defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5236217. doi: 10.1109/TGRS.2022.3213305.
    [15]
    FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
    [16]
    LIU Zhunga, WANG Longfei, WEN Zaidao, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5227914. doi: 10.1109/TGRS.2022.3174703.
    [17]
    邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.

    XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
    [18]
    BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust Pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112.
    [19]
    XUE Ruihang, BAI Xueru, and ZHOU Feng. SAISAR-Net: A robust sequential adjustment ISAR image classification network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214715. doi: 10.1109/TGRS.2021.3113655.
    [20]
    高悦欣, 李震宇, 盛佳恋, 等. 一种大转角SAR图像散射中心各向异性提取方法[J]. 电子与信息学报, 2016, 38(8): 1956–1961. doi: 10.11999/JEIT151261.

    GAO Yuexin, LI Zhenyu, SHENG Jialian, et al. Extraction method for anisotropy characteristic of scattering center in wide-angle SAR imagery[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1956–1961. doi: 10.11999/ JEIT151261.
    [21]
    KHAN S and GUIDA R. Feasibility of time-frequency urban area analysis on TerraSAR-X fully polarimetric dataset[C]. 2011 Joint Urban Remote Sensing Event, Munich, Germany, 2011: 265–268. doi: 10.1109/JURSE.2011.5764770.
    [22]
    ZHANG Lu, HUANG Yue, FERRO-FAMIL L, et al. Effect of polarimetric information on time-frequency analysis using spaceborne SAR image[C]. 13th European Conference on Synthetic Aperture Radar, 2021.
    [23]
    FERRO-FAMIL L and POTTIER E. Urban area remote sensing from L-band PolSAR data using time-frequency techniques[C]. 2007 Urban Remote Sensing Joint Event, Paris, France, 2007: 1–6. doi: 10.1109/URS.2007.371769.
    [24]
    DUQUENOY M, OVARLEZ J P, FERRO-FAMIL L, et al. Study of dispersive and anisotropic scatterers behavior in radar imaging using time-frequency analysis and polarimetric coherent decomposition[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 180–185. doi: 10.1109/RADAR.2006.1631794.
    [25]
    FERRO-FAMIL L, REIGBER A, POTTIER E, et al. Scene characterization using subaperture polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2264–2276. doi: 10.1109/TGRS.2003.817188.
    [26]
    FERRO-FAMIL L, REIGBER A, and POTTIER E. Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach[J]. Canadian Journal of Remote Sensing, 2005, 31(1): 21–29. doi: 10.5589/m04-062.
    [27]
    HUANG Zhongling, DATCU M, PAN Zongxu, et al. HDEC-TFA: An unsupervised learning approach for discovering physical scattering properties of single-polarized SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3054–3071. doi: 10.1109/TGRS.2020.3014335.
    [28]
    SPIGAI M, TISON C, and SOUYRIS J C. Time-frequency analysis in high-resolution SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2699–2711. doi: 10.1109/TGRS.2011.2107914.
    [29]
    HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physics inspired hybrid attention for SAR target recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 164–174. doi: 10.1016/j.isprsjprs.2023.12.004.
    [30]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [31]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
    [32]
    ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1428) PDF downloads(373) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint