Volume 11 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Yao, XU Juncong, QUAN Xiangyin, et al. Tomographic SAR imaging method based on sparse and low-rank structures[J]. Journal of Radars, 2022, 11(1): 52–61. doi: 10.12000/JR21210
Citation: ZHAO Yao, XU Juncong, QUAN Xiangyin, et al. Tomographic SAR imaging method based on sparse and low-rank structures[J]. Journal of Radars, 2022, 11(1): 52–61. doi: 10.12000/JR21210

Tomographic SAR Imaging Method Based on Sparse and Low-rank Structures

doi: 10.12000/JR21210
Funds:  The National Natural Science Foundation of China (61907008, 61991421, 61991420), The Natural Science Foundation of Guangdong Province (2021A1515012009), AIRCAS grant “Structural sparsity signal high performance adaptive sensing theory and its applications in microwave imaging”
More Information
  • Corresponding author: ZHANG Zhe, zhangzhe01@aircas.ac.cn
  • Received Date: 2021-12-28
  • Accepted Date: 2022-01-28
  • Rev Recd Date: 2022-01-28
  • Available Online: 2022-02-10
  • Publish Date: 2022-02-23
  • This paper proposes a three-dimensional tomographic SAR imaging method based on a combined sparse and low-rank structures. The traditional Compressed Sensing (CS) based tomographic SAR imaging methods only utilize the sparse representation and reconstruct along the elevation axis of a given azimuth-distance unit. Considering that the target distributions in cities, forests, and other cases are relatively similar, the elevation backscattering patterns of adjacent azimuth-range cells (pixels) are expected to be highly correlated. The proposed method introduces the Karhunen-Loeve transform to characterize the low-rank structures of the elevation of the target areas and constructs a tomographic SAR imaging model that combines sparse and low-rank structures. The ADMM algorithm is applied to solve the tomographic SAR imaging model, the complex original optimization problem is decomposed into several relatively simple sub-problems, and the tomographic SAR imaging results are obtained by the alternate projection of optimization variables. This method improves the reconstruction accuracy in the case of a few interferograms or channels and has better imaging performance. Simulations and real data experiments show that the reconstruction method can effectively separate the scatterers and ensure the accuracy of the reconstruction energy, maintain a good imaging performance under the condition of reducing the number of interferograms or channels, and effectively suppress the artifacts.

     

  • loading
  • [1]
    李震, 张平, 乔海伟, 等. 层析SAR地表参数信息提取研究进展[J]. 雷达学报, 2021, 10(1): 116–130. doi: 10.12000/JR20095

    LI Zhen, ZHANG Ping, QIAO Haiwei, et al. Advances in information extraction of surface Parameters using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116–130. doi: 10.12000/JR20095
    [2]
    SCHMITT M and ZHU Xiaoxiang. Demonstration of single-pass millimeterwave SAR tomography for forest volumes[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 202–206. doi: 10.1109/LGRS.2015.2506150
    [3]
    张斌, 韦立登, 胡庆荣, 等. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法[J]. 雷达学报, 2018, 7(6): 740–749. doi: 10.12000/JR18087

    ZHANG Bin, WEI Lideng, HU Qingrong, et al. Solution to layover problemin airborne multi-baseline SAR based on spectrum estimation with fourth-order cumulant[J]. Journal of Radars, 2018, 7(6): 740–749. doi: 10.12000/JR18087
    [4]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [5]
    张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584

    ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics &Information Technology, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584
    [6]
    SHI Yilei, BAMLER R, WANG Yuanyuan, et al. SAR tomography at the limit: Building height reconstruction using only 3–5 TanDEM-X bistatic interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8026–8037. doi: 10.1109/TGRS.2020.2986052
    [7]
    CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278
    [8]
    LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS’03, Toulouse, France, 2003: 2014–2016.
    [9]
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    [10]
    庞礴, 代大海, 邢世其, 等. SAR层析成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35(7): 1421–1429. doi: 10.3969/j.issn.1001-506X.2013.07.12

    PANG Bo, DAI Dahai, XING Shiqi, et al. Development and perspective of tomographic SAR imaging technique[J]. Systems Engineering and Electronics, 2013, 35(7): 1421–1429. doi: 10.3969/j.issn.1001-506X.2013.07.12
    [11]
    解金卫, 李真芳, 王帆, 等. 基于幅相不一致准则的建筑物SAR层析成像[J]. 雷达学报, 2020, 9(1): 154–165. doi: 10.12000/JR19062

    XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165. doi: 10.12000/JR19062
    [12]
    ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [13]
    ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1-Norm regularization—The compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [14]
    廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031
    [15]
    AGUILERA E, NANNINI M, and REIGBER A. Wavelet-based compressed sensing for SAR tomography of forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5283–5295. doi: 10.1109/TGRS.2012.2231081
    [16]
    LINGALA S G, HU Yue, DIBELLA E, et al. Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-T SLR[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1042–1054. doi: 10.1109/TMI.2010.2100850
    [17]
    ZHU Xiaoxiang and BAMLER R. Sparse reconstrcution techniques for SAR tomography[C]. 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 2011: 1–8.
    [18]
    LEE K and BRESLER Y. ADMiRA: Atomic decomposition for minimum rank approximation[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4402–4416. doi: 10.1109/TIT.2010.2054251
    [19]
    RECHT B, FAZEL M, and PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471–501. doi: 10.1137/070697835
    [20]
    TRUCKENBRODT J. EO-College tomography tutorial[EB/OL]. https://github.com/EO-College/tomography_tutorial, 2018.
    [21]
    仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1611) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint