Volume 9 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165. doi: 10.12000/JR19062
Citation: XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165. doi: 10.12000/JR19062

SAR Tomography Imaging for Buildings Using an Inconsistency Criterion for Amplitude and Phase

doi: 10.12000/JR19062
Funds:  The National Natural Science Foundation of China (61671355)
More Information
  • Corresponding author: LI Zhenfang, lzf@xidian.edu.cn
  • Received Date: 2019-06-26
  • Rev Recd Date: 2019-08-22
  • Available Online: 1970-01-01
  • Publish Date: 2020-02-01
  • An indispensable step in the imaging of Tomographic Synthetic Aperture Radar (TomoSAR) in spectral analysis or Compressive Sensing (CS) technology is estimating the perpendicular baselines in the Perpendicular Line Of Sight (PLOS) in deramping operations. To avoid this procedure, we introduce a Beam Forming (BF) method in the spatial domain that scans for TomoSAR focusing in the PLOS direction. Because of the sophisticated structure of buildings in urban areas, multipass high-resolution SAR images suffer from discrepancies in the look and incidence angles as well as speckle noise. As a result, it is challenging to precisely coregister all the homologous points in the identical pixels of multipass SAR images. To identify the most relevant pixels with respect to both amplitude and phase when BF imaging is implemented, we propose an inconsistency criterion for specific pixels using the joint phase and amplitude of pixels in a window. By minimizing the inconsistency criterion, homologous points with high accuracy can be identified by focusing on TomoSAR imaging. We used simulation and real data from a multipass X-band airborne TomoSAR system in China to test the effectiveness of the proposed method. Experimental results show that the peak of the reflectivity profile via conventional tomographic imaging is about 15.63 m, whereas that by the proposed method is 16.88 m, which is very close to the actual height of the 18 m building. The results demonstrate the feasibility of improving the focusing power of scatterers in the PLOS direction and extracting the three-dimensional outliers of buildings.

     

  • loading
  • [1]
    REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
    [2]
    洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [3]
    廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031
    [4]
    赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39(5): 1019–1023. doi: 10.3969/j.issn.1001-506X.2017.05.11

    ZHAO Kexiang, BI Hui, and ZHANG Bingchen. SAR tomography method based on fast iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39(5): 1019–1023. doi: 10.3969/j.issn.1001-506X.2017.05.11
    [5]
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645

    LI Liechen and LI Daojing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645
    [6]
    李烈辰, 李道京, 张清娟. 基于压缩感知的三孔径毫米波合成孔径雷达侧视三维成像[J]. 电子与信息学报, 2013, 35(3): 552–558. doi: 10.3724/SP.J.1146.2012.01016

    LI Liechen, LI Daojing, and ZHANG Qingjuan. Three-aperture millimeter-wave SAR side-looking three-dimensional imaging based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(3): 552–558. doi: 10.3724/SP.J.1146.2012.01016
    [7]
    魏恋欢, 廖明生, BALZ T, 等. 高分辨率SAR层析成像建筑物叠掩散射体提取[J]. 武汉大学学报: 信息科学版, 2014, 39(5): 536–540. doi: 10.13203/j.whugis20120460

    WEI Lianhuan, LIAO Mingsheng, BALZ T, et al. Layover building scatterers extraction via high-resolution spaceborne SAR tomography[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 536–540. doi: 10.13203/j.whugis20120460
    [8]
    BUDILLON A, JOHNSY A C, and SCHIRINZI G. A fast support detector for superresolution localization of multiple scatterers in SAR tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2768–2779. doi: 10.1109/JSTARS.2017.2657227
    [9]
    SAUER S, FERRO-FAMIL L, REIGBER A, et al. Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4616–4629. doi: 10.1109/TGRS.2011.2147321
    [10]
    TEBALDINI S and GUARNIERI A M. On the role of phase stability in SAR multibaseline applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2953–2966. doi: 10.1109/tgrs.2010.2043738
    [11]
    LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324.
    [12]
    GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005.
    [13]
    GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/maes.2005.1499278
    [14]
    LOMBARDINI F, MONTANARI M, and GINI F. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources[J]. IEEE Transactions on Signal Processing, 2003, 51(6): 1508–1519. doi: 10.1109/tsp.2003.811239
    [15]
    FORNARO G, SERAFINO F, and SOLDOVIERI F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 507–517. doi: 10.1109/TGRS.2003.809934
    [16]
    闵锐, 杨倩倩, 皮亦鸣, 等. 基于正则化正交匹配追踪的SAR层析成像[J]. 电子测量与仪器学报, 2012, 26(12): 1069–1073. doi: 10.3724/SP.J.1187.2012.01069

    MIN Rui, YANG Qianqian, PI Yiming, et al. SAR tomography imaging based on regularized orthogonal matching pursuit[J]. Journal of Electronic Measurement and Instrument, 2012, 26(12): 1069–1073. doi: 10.3724/SP.J.1187.2012.01069
    [17]
    ZHU Xiaoxiang and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/tgrs.2010.2050487
    [18]
    WEI Lianhuan, BALZ T, ZHANG Lu, et al. A novel fast approach for SAR tomography: Two-step iterative shrinkage/thresholding[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1377–1381. doi: 10.1109/lgrs.2015.2402124
    [19]
    BANDA F, DALL J, and TEBALDINI S. Single and multipolarimetric P-band SAR tomography of subsurface ice structure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2832–2845. doi: 10.1109/TGRS.2015.2506399
    [20]
    XING Shiqi, LI Yongzhen, DAI Dahai, et al. Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3694–3705. doi: 10.1109/TGRS.2012.2220145
    [21]
    任笑真, 杨汝良. 一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法[J]. 雷达学报, 2016, 5(1): 65–71. doi: 10.12000/JR15135

    REN Xiaozhen and YANG Ruliang. Four-dimensional SAR imaging algorithm based on iterative reconstruction of magnitude and phase[J]. Journal of Radars, 2016, 5(1): 65–71. doi: 10.12000/JR15135
    [22]
    SCHMITT M and STILLA U. Maximum-likelihood-based approach for single-pass synthetic aperture radar tomography over urban areas[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1145–1153. doi: 10.1049/iet-rsn.2013.0378
    [23]
    梅振国. 灰色绝对关联度及其计算方法[J]. 系统工程, 1992, 10(5): 43–44, 72. doi: 10.3321/j.issn:1001-506X.1992.05.009

    MEI Zhen’guo. The concept and computation method of grey absolute correlation degree[J]. Systems Engineering, 1992, 10(5): 43–44, 72. doi: 10.3321/j.issn:1001-506X.1992.05.009
    [24]
    孙希龙. SAR层析与差分层析成像技术研究[D]. [博士论文], 国防科学技术大学, 2012: 57–74.

    SUN Xilong. Research on SAR tomography and differential SAR tomography imaging technology[D]. [Ph.D. dissertation], National University of Defense Technology, 2012: 57–74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4163) PDF downloads(284) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint