Citation: | LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119 |
[1] |
KOVALY J J. Synthetic Aperture Radar[M]. Dedham: Artech House, 1976.
|
[2] |
SKOLNIK M I. Radar Handbook[M]. 2nd ed. New York: McGraw-Hill, 1990.
|
[3] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
[4] |
李悦丽. 弹载合成孔径雷达成像技术研究[D]. [博士论文], 国防科学技术大学, 2008.
LI Yueli. The imaging techniques of missile-borne synthetic aperture radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2008.
|
[5] |
黄世奇, 禹春来, 刘代志, 等. 成像精确制导技术分析与研究[J]. 导弹与航天运载技术, 2005(5): 20–25. doi: 10.3969/j.issn.1004-7182.2005.05.005
HUANG Shiqi, YU Chunlai, LIU Daizhi, et al. Analysis and research on imaging precision guidance technology[J]. Missiles and Space Vehicles, 2005(5): 20–25. doi: 10.3969/j.issn.1004-7182.2005.05.005
|
[6] |
陈定昌, 袁起, 范金荣. 精确制导武器发展趋向[J]. 现代防御技术, 2000, 28(4): 41–47, 57. doi: 10.3969/j.issn.1009-086X.2000.04.007
CHEN Dingchang, YUAN Qi, and FAN Jinrong. The development tread of the precision guided weapon[J]. Modern Defence Technology, 2000, 28(4): 41–47, 57. doi: 10.3969/j.issn.1009-086X.2000.04.007
|
[7] |
范金荣. 21世纪前20年精确制导技术发展预测[J]. 现代防御技术, 2003, 31(1): 30–33. doi: 10.3969/j.issn.1009-086X.2003.01.008
FAN Jinrong. A prediction of precision guidance technology in the earlier 20 years of the 21st century[J]. Modern Defence Technology, 2003, 31(1): 30–33. doi: 10.3969/j.issn.1009-086X.2003.01.008
|
[8] |
秦玉亮, 王建涛, 王宏强, 等. 弹载合成孔径雷达技术研究综述[J]. 信号处理, 2009, 25(4): 630–635. doi: 10.3969/j.issn.1003-0530.2009.04.023
QIN Yuliang, WANG Jiantao, WANG Hongqiang, et al. Overview on missile-borne synthetic aperture radar[J]. Signal Processing, 2009, 25(4): 630–635. doi: 10.3969/j.issn.1003-0530.2009.04.023
|
[9] |
高晓冬, 王枫, 范晋祥. 精确制导系统面临的挑战与对策[J]. 战术导弹技术, 2017(6): 62–69, 75. doi: 10.16358/j.issn.1009-1300.2017.06.11
GAO Xiaodong, WANG Feng, and FAN Jinxiang. The challenges and development paths for precision guidance system[J]. Tactical Missile Technology, 2017(6): 62–69, 75. doi: 10.16358/j.issn.1009-1300.2017.06.11
|
[10] |
陈浩川, 张彬, 张振华. 精确制导多体制探测技术新进展[J]. 遥测遥控, 2017, 38(6): 23–29. doi: 10.3969/j.issn.2095-1000.2017.06.005
CHEN Haochuan, ZHANG Bin, and ZHANG Zhenhua. New development of multi-system and multi-band detection technology for precision guidance[J]. Journal of Telemetry,Tracking and Command, 2017, 38(6): 23–29. doi: 10.3969/j.issn.2095-1000.2017.06.005
|
[11] |
原涛. 弹载SAR实时成像信号处理机设计[D]. [硕士论文], 西安电子科技大学, 2013.
YUAN Tao. Design of missile-borne SAR real-time imaging signal processing system[D]. [Master dissertation], Xidian University, 2013.
|
[12] |
JACKSON M C. The geometry of bistatic radar systems[J]. IEE Proceedings F-Communications, Radar and Signal Processing, 1986, 133(7): 604–612. doi: 10.1049/ip-f-1.1986.0097
|
[13] |
SAHR J D and LIND F D. The Manastash Ridge radar: A passive bistatic radar for upper atmospheric radio science[J]. Radio Science, 1997, 32(6): 2345–2358. doi: 10.1029/97RS02454
|
[14] |
CAI Jun and MCMECHAN G A. Ray-based synthesis of bistatic ground-penetrating radar profiles[J]. Geophysics, 1995, 60(1): 87–96. doi: 10.1190/1.1443766
|
[15] |
WANG Pengbo, LIU Wei, CHEN Jie, et al. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225–1235. doi: 10.1109/TGRS.2014.2336241
|
[16] |
BAO Min, XING Mengdao, WANG Yong, et al. Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation[J]. Electronics Letters, 2011, 47(18): 1043–1045. doi: 10.1049/el.2011.1322.
|
[17] |
LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and Omega-k-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631
|
[18] |
DENG Bin, LI Xiang, WANG Hongqiang, et al. Fast raw-signal simulation of extended scenes for missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 44–48. doi: 10.1109/LGRS.2010.2050675
|
[19] |
LI Yachao, SONG Xuan, GUO Liang, et al. Inverse-mapping filtering polar formation algorithm for high-maneuverability SAR with time-variant acceleration[J]. Signal Processing, 2020, 171: 107506. doi: 10.1016/j.sigpro.2020.107506
|
[20] |
余涛. 改进高机动平台曲线轨迹SAR频域成像算法研究[D]. [硕士论文], 西安电子科技大学, 2019.
YU Tao. Study on improved frequency-domain imaging algorithms for SAR mounted on high maneuvering platforms with curve tracks[D]. [Master dissertation], Xidian University, 2019.
|
[21] |
SUN Liwei, YU Ze, LI Chunsheng, et al. An imaging algorithm for spaceborne high-squint L-band SAR based on time-domain rotation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5289–5299. doi: 10.1109/JSTARS.2019.2953836
|
[22] |
AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595–3609. doi: 10.1109/TGRS.2012.2183606
|
[23] |
AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended two-step focusing approach for squinted spotlight SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2889–2900. doi: 10.1109/TGRS.2011.2174460
|
[24] |
HUANG Bang, ZHANG Shunsheng, WANG Wenqin, et al. High-precision imaging algorithm for highly squinted SAR with 3D acceleration[J]. IEEE Access, 2019, 7: 130399–130409. doi: 10.1109/ACCESS.2019.2940283
|
[25] |
ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/tgrs.2015.2447393
|
[26] |
XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/TGRS.2013.2281454
|
[27] |
李浩林. 机载SAR快速后向投影成像算法研究[D]. [博士论文], 西安电子科技大学, 2015.
LI Haolin. Study on fast back-projection algorithms for airborne SAR imaging[D]. [Ph. D. dissertation], Xidian University, 2015.
|
[28] |
ZHOU Song, YANG Lei, ZHAO Lifan, et al. Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7053–7065. doi: 10.1109/TGRS.2017.2739133
|
[29] |
YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999: 60–64.
|
[30] |
ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
|
[31] |
ZHANG Tao, LIAO Guisheng, LI Yachao, et al. A two-stage time-domain autofocus method based on generalized sharpness metrics and AFBP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205413. doi: 10.1109/TGRS.2021.3068789
|
[32] |
DONG Qi, SUN Guangcai, YANG Zemin, et al. Cartesian factorized backprojection algorithm for high-resolution spotlight SAR imaging[J]. IEEE Sensors Journal, 2018, 18(3): 1160–1168. doi: 10.1109/JSEN.2017.2780164
|
[33] |
李悦丽, 梁甸农, 黄晓涛. 一种单脉冲雷达多通道解卷积前视成像方法[J]. 信号处理, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013
LI Yueli, LIANG Diannong, and HUANG Xiaotao. A multi-channel deconvolution based on forword-looking imaging method in monopulse radar[J]. Signal Processing, 2007, 23(5): 699–703. doi: 10.3969/j.issn.1003-0530.2007.05.013
|
[34] |
陈洪猛. 机载广域监视雷达高分辨成像方法研究[D]. [博士论文], 西安电子科技大学, 2016.
CHEN Hongmeng. Study of high resolution imaging for airborne wide area surveillance radar[D]. [Ph. D. dissertation], Xidian University, 2016.
|
[35] |
胡体玲, 李兴国. 单脉冲探测技术的发展综述[J]. 现代雷达, 2006, 28(12): 24–29. doi: 10.16592/j.cnki.1004-7859.2006.12.006
HU Tiling and LI Xingguo. Research on development of monopulse detection technology[J]. Modern Radar, 2006, 28(12): 24–29. doi: 10.16592/j.cnki.1004-7859.2006.12.006
|
[36] |
LÖHNER A K. Improved azimuthal resolution of forward looking SAR by sophisticated antenna illumination function design[J]. IEE Proceedings - Radar, Sonar and Navigation, 1998, 145(2): 128–134. doi: 10.1049/ip-rsn:19981731
|
[37] |
YOUNIS M and WIESBECK W. Antenna system for a forward looking SAR using digital beamforming on-receive-only[C]. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, USA, 2000: 2343–2345.
|
[38] |
CHENG Jing and HAN Shensheng. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903. doi: 10.1103/PhysRevLett.92.093903
|
[39] |
GONG Wenlin and HAN Shensheng. The influence of axial correlation depth of light field on lensless ghost imaging[J]. Journal of the Optical Society of America B, 2010, 27(4): 675–678. doi: 10.1364/JOSAB.27.000675
|
[40] |
王东进, 徐浩, 陈卫东, 等. 微波凝视成像的方法[P]. 中国, 201110000699.8, 2011.
WANG Dongjin, XU Hao, CHEN Weidong, et al. Microwave gaze correlation imaging[P]. CN, 201110000699.8, 2011.
|
[41] |
王东进, 杨予昊, 郭圆月, 等. 用于悬停平台的对地凝视成像系统[P]. 中国, 201110000522.8, 2011.
WANG Dongjin, YANG Yuhao, GUO Yuanyue, et al. Ground staring imaging system for hovering platform[P]. CN, 201110000699.8, 2011.
|
[42] |
阮锋, 卢夏雷, 郭亮, 等. 基于超材料天线的超分辨关联成像的改进[J]. 系统工程与电子技术, 2021, 43(12): 3510–3517. doi: 10.12305/j.issn.1001-506X.2021.12.12
RUAN Feng, LU Xialei, GUO Liang, et al. Improvement of super-resolution correlated imaging based on metamaterial antenna[J]. Systems Engineering and Electronics, 2021, 43(12): 3510–3517. doi: 10.12305/j.issn.1001-506X.2021.12.12
|
[43] |
马远鹏. 基于时空两维随机辐射场的微波凝视关联成像初探[D]. [博士论文], 中国科学技术大学, 2013.
MA Yuanpeng. Preliminary research on microwave staring correlated imaging based on temporal-spatial stochastic radiation fields[D]. [Ph. D. dissertation], University of Science and Technology of China, 2013.
|
[44] |
李东泽. 雷达关联成像技术研究[D]. [博士论文], 国防科学技术大学, 2014.
LI Dongze. Radar coincidence imaging technique research[D]. [Ph. D. dissertation], National University of Defense Technology, 2014.
|
[45] |
查国峰. 运动目标微波关联成像技术研究[D]. [博士论文], 国防科学技术大学, 2016.
ZHA Guofeng. Microwave coincidence imaging technique research for moving target[D]. [Ph. D. dissertation], National University of Defense Technology, 2016.
|
[46] |
LI Dongze, LI Xiang, CHENG Yongqiang, et al. Three dimensional radar coincidence imaging[J]. Progress in Electromagnetics Research M, 2013, 33: 223–238. doi: 10.2528/PIERM13081101
|
[47] |
孟青泉. 微波高分辨凝视关联成像信息处理研究[D]. [博士论文], 中国科学技术大学, 2016.
MENG Qingquan. The research on information processing in high resolution microwave staring correlated imaging[D]. [Ph. D. dissertation], University of Science and Technology of China, 2016.
|
[48] |
LIU Bo and WANG Dongjin. Orthogonal radiation field construction for microwave staring correlated imaging[J]. Progress in Electromagnetics Research M, 2017, 57: 139–149. doi: 10.2528/PIERM17042003
|
[49] |
张健霖. 微波凝视关联成像辐射源设计理论研究[D]. [博士论文], 中国科学技术大学, 2021.
ZHANG Jianlin. Theotical research on radiation source design of microwave staring correlated imaging[D]. [Ph. D. dissertation], University of Science and Technology of China, 2021.
|
[50] |
YANG Haotian, ZHANG Linjian, GAO Yesheng, et al. Azimuth wavefront modulation using plasma lens array for microwave staring imaging[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015.
|
[51] |
张安学, 张松林, 徐卓, 等. 一种单发射体制的雷达关联成像方法[P]. 中国, 201710132260.8, 2017.
ZHANG Anxue, ZHANG Songlin, XU Zhuo, et al. A radar correlation imaging method for single-emission system[P]. CN, 201710132260.8, 2017.
|
[52] |
KATZ O, BROMBERG Y, and SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110. doi: 10.1063/1.3238296
|
[53] |
ZHANG Chi, GUO Shuxu, CAO Junsheng, et al. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 2014, 22(24): 30063–30073. doi: 10.1364/OE.22.030063
|
[54] |
GONG Wenlin. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 2015, 3(5): 234–237. doi: 10.1364/PRJ.3.000234
|
[55] |
西安电子科技大学, 中国电子科技集团公司第五十四研究所. 一种基于广义全变差正则化的雷达关联成像方法[P]. 中国, 201810573957.3, 2018.
Xidian University and The 54th Research Institute of CETC. A radar correlation imaging method based on generalized total variation regularization[P]. CN, 201810573957.3, 2018.
|
[56] |
CHENG Yongqiang, ZHOU Xiaoli, XU Xianwu, et al. Radar coincidence imaging with stochastic frequency modulated array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 414–427. doi: 10.1109/JSTSP.2016.2615275
|
[57] |
宋洋洋. 基于压缩感知的关联成像信号处理方法研究[D]. [硕士论文], 北京邮电大学, 2017.
SONG Yangyang. Study of the ghost iamging signal processing methods based on the compressive sensing[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2017.
|
[58] |
钱婷婷. 块稀疏目标凝视关联成像技术研究[D]. [硕士论文], 中国科学技术大学, 2018.
QIAN Tingting. Research on staring correlated imaging of block sparse target[D]. [Master dissertation], University of Science and Technology of China, 2018.
|
[59] |
韩亚东. 时空辐射场弱随机性下的微波关联稀疏成像方法研究[D]. [硕士论文], 西安电子科技大学, 2020.
HAN Yadong. Research on microwave correlated sparse imaging in weak randomness of temporal-spatial radiation field[D]. [Master dissertation], Xidian University, 2020.
|
[60] |
罗春生. 运动目标微波关联稀疏成像技术研究[D]. [硕士论文], 中国科学技术大学, 2016.
LUO Chunsheng. Research on microwave correlated sparse imaging of moving target[D]. [Master dissertation], University of Science and Technology of China, 2016.
|
[61] |
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
|
[62] |
何学智. 微波凝视关联成像的信息处理方法与仿真[D]. [博士论文], 中国科学技术大学, 2013.
HE Xuezhi. The information processing methods and simulations in microwave staring correlated imaging[D]. [Ph. D. dissertation], University of Science and Technology of China, 2013.
|
[63] |
于慧. 稀疏目标的关联成像算法研究[D]. [硕士论文], 中国科学技术大学, 2014.
YU Hui. Research on sparse imaging algorithms for correlated imaging systems[D]. [Master dissertation], University of Science and Technology of China, 2014.
|
[64] |
许然. 提高雷达成像质量的若干新体制和新方法研究[D]. [博士论文], 西安电子科技大学, 2015.
XU Ran. Study on new systems and techniques for improving radar imaging performances[D]. [Ph. D. dissertation], Xidian University, 2015.
|
[65] |
蒋峥. 微波凝视关联成像辐射场的空间相关性和运动补偿的研究[D]. [博士论文], 中国科学技术大学, 2021.
JIANG Zheng. Research on spatial correlation and motion compensation of radiation field of microwave staring correlated imaging[D]. [Ph. D. dissertation], University of Science and Technology of China, 2021.
|
[66] |
卢夏雷. 超材料天线雷达前视成像技术研究[D]. [硕士论文], 西安电子科技大学, 2021.
LU Xialei. Research on forward-looking imaging technology of metamaterial antenna radar[D]. [Master dissertation], Xidian University, 2021.
|
[67] |
查月波. 基于凸优化的雷达超分辨成像理论与方法研究[D]. [博士论文], 电子科技大学, 2016.
ZHA Yuebo. Radar super resolution imaging theory and methods study based on convex optimization[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2016.
|
[68] |
陈洪猛, 李明, 王泽玉, 等. 基于多帧数据联合处理的机载单通道雷达贝叶斯前视成像[J]. 电子与信息学报, 2015, 37(10): 2328–2334. doi: 10.11999/JEIT150153
CHEN Hongmeng, LI Ming, WANG Zeyu, et al. Bayesian forward-looking imaging for airborne single-channel radar based on combined multiple frames data[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2328–2334. doi: 10.11999/JEIT150153
|
[69] |
MAO Deqing, YANG Jianyu, ZHANG Yongchao, et al. Angular superresolution of real aperture radar using online detect-before-reconstruct framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109317. doi: 10.1109/TGRS.2021.3139355
|
[70] |
HUANG Yulin, ZHA Yuebo, WANG Yue, et al. Forward looking radar imaging by truncated singular value decomposition and its application for adverse weather aircraft landing[J]. Sensors, 2015, 15(6): 14397–14414. doi: 10.3390/s150614397
|
[71] |
LENTI F, NUNZIATA F, MIGLIACCIO M, et al. Two-dimensional TSVD to enhance the spatial resolution of radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2450–2458. doi: 10.1109/TGRS.2013.2261303
|
[72] |
LENTI F, NUNZIATA F, MIGLIACCIO M, et al. 2D TSVD to enhance the resolution of radiometer data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6091–6094.
|
[73] |
WU Yang, ZHANG Yin, ZHANG Yongchao, et al. TSVD with least squares optimization for scanning radar angular super-resolution[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1450–1454.
|
[74] |
CRAVEN P and WAHBA G. Smoothing noisy data with spline functions[J]. Numerische Mathematik, 1978, 31(4): 377–403. doi: 10.1007/BF01404567
|
[75] |
WANG Zhou and BOVIK A C. Mean squared error: Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26(1): 98–117. doi: 10.1109/MSP.2008.930649
|
[76] |
VOGEL C R. Non-convergence of the L-curve regularization parameter selection method[J]. Inverse Problems, 1996, 12(4): 535–547. doi: 10.1088/0266-5611/12/4/013
|
[77] |
HANSEN P C, JENSEN T K, and RODRIGUEZ G. An adaptive pruning algorithm for the discrete L-curve criterion[J]. Journal of Computational and Applied Mathematics, 2007, 198(2): 483–492. doi: 10.1016/j.cam.2005.09.026
|
[78] |
王子曦. 基于正则化的雷达前视超分辨成像算法工程应用分析[J]. 电子技术与软件工程, 2021(17): 89–92.
WANG Zixi. Engineering application analysis of radar forward looking super-resolution imaging algorithm based on regularization[J]. Electronic Technology &Software Engineering, 2021(17): 89–92.
|
[79] |
CHEN Hongmeng, LI Yachao, GAO Wenquan, et al. Bayesian forward-looking superresolution imaging using Doppler deconvolution in expanded beam space for high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105113. doi: 10.1109/TGRS.2021.3107717
|
[80] |
HUANG Yulin, ZHA Yuebo, ZHANG Yin, et al. Real-beam scanning radar angular super-resolution via sparse deconvolution[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 3081–3084.
|
[81] |
ZHANG Yin, LI Changlin, MAO Deqing, et al. Bayesian superresolution method of forward-looking imaging with generalized Gaussian constraint[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 5128–5131.
|
[82] |
LI Dongye, HUANG Yulin, and YANG Jianyu. Real beam radar imaging based on adaptive Lucy-Richardson algorithm[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1437–1440.
|
[83] |
CHEN Shaoli and YANG Min. An adaptive fast iterative shrinkage threshold algorithm[C]. 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 2017: 2190–2194.
|
[84] |
ZHANG Qiping, ZHANG Yin, HUANG Yulin, et al. TV-sparse super-resolution method for radar forward-looking imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6534–6549. doi: 10.1109/TGRS.2020.2977719
|
[85] |
YANG Junfeng, ZHANG Yin, and YIN Wotao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288–297. doi: 10.1109/JSTSP.2010.2042333
|
[86] |
HUO Weibo, TUO Xingyu, ZHANG Yin, et al. Balanced tikhonov and total variation deconvolution approach for radar forward-looking super-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3505805. doi: 10.1109/LGRS.2021.3072389
|
[87] |
TUO Xingyu, ZHANG Yin, HUANG Yulin, et al. A hybrid norm regularization approach for radar forward-looking angle super-resolution imaging[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–5.
|
[88] |
ZHANG Yongchao, ZHANG Yin, HUANG Yulin, et al. Angular superresolution for scanning radar with improved regularized iterative adaptive approach[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 846–850. doi: 10.1109/LGRS.2016.2550491
|
[89] |
JIANG Xiaoqing, LI Yueli, FAN Chongyi, et al. An interpolated iterative adaptive approach for scanning radar imaging[C]. 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019: 1–4.
|
[90] |
吴迪, 朱岱寅, 朱兆达. 机载雷达单脉冲前视成像算法[J]. 中国图象图形学报, 2010, 15(3): 462–469. doi: 10.11834/jig.20100317
WU Di, ZHU Daiyin, and ZHU Zhaoda. Research on nomopulse forward-looking imaging algorithm for airborne radar[J]. Journal of Image and Graphics, 2010, 15(3): 462–469. doi: 10.11834/jig.20100317
|
[91] |
吴迪, 朱岱寅, 田斌, 等. 单脉冲成像算法性能分析[J]. 航空学报, 2012, 33(10): 1905–1914.
WU Di, ZHU Daiyin, TIAN Bin, et al. Performance evaluation for monopulse imaging algorithm[J]. Acta Aeronauticaet Astronautica Sinica, 2012, 33(10): 1905–1914.
|
[92] |
吴迪, 杨成杰, 朱岱寅, 等. 一种用于单脉冲成像的自聚焦算法[J]. 电子学报, 2016, 44(8): 1962–1968. doi: 10.3969/j.issn.0372-2112.2016.08.027
WU Di, YANG Chengjie, ZHU Daiyin, et al. An autofocusing algorithm for monopulse imaging[J]. Acta Electronica Sinica, 2016, 44(8): 1962–1968. doi: 10.3969/j.issn.0372-2112.2016.08.027
|
[93] |
李皓. 基于单脉冲雷达的多目标检测方法与仿真[D]. [硕士论文], 北京理工大学, 2016.
LI Hao. Simulation of detection for multiple unresolved targets with monopluse radar[D]. [Master dissertation], Beijing Institute of Technology, 2016.
|
[94] |
杨洋, 李悦丽. 单脉冲前视成像多目标分辨算法[J]. 信号处理, 2016, 32(9): 1055–1064. doi: 10.16798/j.issn.1003-0530.2016.09.07
YANG Yang and LI Yueli. Multi-targets discrimination algorithm in monopulse forward-looking imaging[J]. Journal of Signal Processing, 2016, 32(9): 1055–1064. doi: 10.16798/j.issn.1003-0530.2016.09.07
|
[95] |
ZHANG Xin, WILLETT P K, and BAR-SHALOM Y. Monopulse Radar detection and localization of multiple unresolved targets via joint bin Processing[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1225–1236. doi: 10.1109/TSP.2005.843732
|
[96] |
YANG Yang and LI Yueli. A maximum likelihood extractor for forward-looking imaging of multiple unresolved targets in monopulse radar[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
|
[97] |
XIE Junhao, FENG Xiaodong, YUAN Yeshu, et al. Application of monopulse techniques in angle-measuring of single-beam mechanical scanning radar[C]. 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010: 2971–2974.
|
[98] |
张超峰, 刘丹, 程臻. 采用RELAX算法提高单脉冲三维成像横向分辨率[J]. 系统工程与电子技术, 2008, 30(11): 2063–2065. doi: 10.3321/j.issn:1001-506X.2008.11.007
ZHANG Chaofeng, LIU Dan, and CHENG Zhen. Improvement in lateral resolution of mono-pulse 3-D imaging radar using RELAX algorithm[J]. Systems Engineering and Electronics, 2008, 30(11): 2063–2065. doi: 10.3321/j.issn:1001-506X.2008.11.007
|
[99] |
LI Yuhan, QI Wei, DENG Zhenmiao, et al. Monopulse instantaneous 3D imaging for wideband radar system[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 53–67. doi: 10.23919/JSEE.2021.000007
|
[100] |
李小雷, 蔡雨, 袁军, 等. 一种单孔径毫米波单脉冲雷达前视三维SAR成像算法[J]. 弹箭与制导学报, 2019, 39(3): 125–129. doi: 10.15892/j.cnki.djzdxb.2019.03.028
LI Xiaolei, CAI Yu, YUAN Jun, et al. A three-dimensional imaging algorithm for forward-looking SAR of single aperture millimeter wave monopulse radar[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(3): 125–129. doi: 10.15892/j.cnki.djzdxb.2019.03.028
|
[101] |
胡艳芳, 陈伯孝, 吴传章. 基于单脉冲三维成像的抗交叉眼干扰方法[J]. 系统工程与电子技术, 2022, 44(4): 1188–1194. doi: 10.12305/j.issn.1001-506X.2022.04.15
HU Yanfang, CHEN Baixiao, and WU Chuanzhang. Anti-cross-eye jamming method based on monopulse radar 3-D imaging[J]. Systems Engineering and Electronics, 2022, 44(4): 1188–1194. doi: 10.12305/j.issn.1001-506X.2022.04.15
|
[102] |
ZOFFOLI S, CRISCONIO M, MUSSO C, et al. A small glance to earth from spaceglance to Earth from space[C]. The 3rd Interenational Symposdium of the IAA on Small Satelites for Earth Observation, Berlin, Germany, 2001: 99–103.
|
[103] |
WEIB M. Synchronisation of bistatic radar systems[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1750–1753.
|
[104] |
KRIEGER G and YOUNIS M. Impact of oscillator noise in bistatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 424–428. doi: 10.1109/LGRS.2006.874164
|
[105] |
LIU Kesheng. An analysis of some problems of bistatic and multistatic radars[C]. 2003 International Conference on Radar, Adelaide, Australia, 2003: 429–432.
|
[106] |
YOUNIS M, MERZIG R, and KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 429–433. doi: 10.1109/LGRS.2006.874163
|
[107] |
D’ARIA D, GUARNIERI A M, and ROCCA F. Focusing bistatic synthetic aperture radar using dip move out[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1362–1376. doi: 10.1109/TGRS.2004.830166
|
[108] |
闫鸿慧, 王岩飞, 于海锋, 等. 一种基于距离补偿的分布式小卫星双基SAR成像方法[J]. 电子与信息学报, 2005, 27(5): 771–774.
YAN Honghui, WANG Yanfei, YU Haifeng, et al. An imaging method of distributed small satellites bistatic SAR based on range distance compensation[J]. Journal of Electronics &Information Technology, 2005, 27(5): 771–774.
|
[109] |
汤子跃, 张守融. 双站合成孔径雷达系统原理[M]. 北京: 科学出版社, 2003.
TANG Ziyue and ZHANG Shourong. Principle of Bi-station Synthetic Aperture Radar System[M]. Beijing: Science Press, 2003.
|
[110] |
QIU Xiaolan, HU Donghui, and DING Chibiao. Focusing bistaitc images use RDA based on hyperbolic approximating[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
|
[111] |
梅海文. 双/多基地SAR成像与定位方法研究[D]. [博士论文], 西安电子科技大学, 2019.
MEI Haiwen. Imaging algorithm and position method study on bistatic/multistatic SAR[D]. [Ph. D. dissertation], Xidian University, 2019.
|
[112] |
LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031–2038. doi: 10.1109/TGRS.2004.835295
|
[113] |
RIGLING B D and MOSES R L. Polar format algorithm for bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1147–1159. doi: 10.1109/TAES.2004.1386870
|
[114] |
WANG R, LOFFELD O, NEO Y L, et al. Extending Loffeld’s bistatic formula for the general bistatic SAR configuration[J]. IET Radar, Sonar & Navigation, 2010, 4(1): 74–84. doi: 10.1049/iet-rsn.2009.0099
|
[115] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR using chirp scaling algorithm[C]. 2011 IEEE RadarCon (RADAR), Kansas, USA, 2011: 1036–1039.
|
[116] |
WU Junjie, PU Wei, HUANG Yulin, et al. Bistatic forward-looking SAR focusing using ω-k based on spectrum modeling and optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4500–4512. doi: 10.1109/jstars.2018.2873645
|
[117] |
WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599
|
[118] |
ZHONG Hua and LIU Xingzhao. An effective focusing approach for azimuth invariant bistatic SAR processing[J]. Signal Processing, 2010, 90(1): 395–404. doi: 10.1016/j.sigpro.2009.07.005
|
[119] |
SUN Zheng, ZHANG Wei, and ZHANG Shunsheng. An improved CS imaging algorithm for spaceborne/airborne hybrid bistatic SAR[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011.
|
[120] |
WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840
|
[121] |
MENG Ziqiang, LI Yachao, SONG Xiufeng, et al. Amplitude-phase discontinuity calibration for phased array radar in varying jamming environment[J]. IET Signal Processing, 2014, 8(7): 729–737. doi: 10.1049/iet-spr.2013.0308
|
[122] |
MENG Ziqiang, LI Yachao, XING Mengdao, et al. Property analysis of bistatic forward-looking SAR with arbitrary geometry[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 111–127. doi: 10.1109/JSEE.2016.00012
|
[123] |
LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing Translational-Variant bistatic forward-looking SAR data using the modified Omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780
|
[124] |
ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057
|
[125] |
DENG Huan, LI Yachao, LIU Mengqi, et al. A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track[J]. IEEE Sensors Journal, 2018, 18(8): 3311–3326. doi: 10.1109/JSEN.2018.2809508
|
[126] |
WANG Yuekun, LIU Yanyang, LI Zhenfang, et al. High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2380–2384. doi: 10.1109/LGRS.2017.2765675
|
[127] |
FENG Dong, AN Daoxiang, and HUANG Xiaotao. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2724–2734. doi: 10.1109/TAES.2018.2828238
|
[128] |
LI Yachao, XU Gaotian, ZHOU Song, et al. A novel CFFBP algorithm with noninterpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225916. doi: 10.1109/TGRS.2022.3162230
|
[129] |
江淮. 弹载合成孔径雷达成像处理算法研究[D]. [博士论文], 南京理工大学, 2017.
JIANG Huai. Research on the imgaing algorithm of missle borne synthetic aperture radar[D]. [Ph. D. dissertation], Nanjing University of Science and Technology, 2017.
|
[130] |
陈伟, 孙洪忠, 齐恩勇, 等. 智能化时代雷达导引头信号处理关键技术展望[J]. 航空兵器, 2019, 26(1): 76–82. doi: 10.12132/ISSN.1673-5048.2018.0090
CHEN Wei, SUN Hongzhong, QI Enyong, et al. Key technology prospects of radar seeker signal processing in intelligent age[J]. Aero Weaponry, 2019, 26(1): 76–82. doi: 10.12132/ISSN.1673-5048.2018.0090
|
[131] |
LIANG Wenkai, WU Yan, LI Ming, et al. A feature fusion-net using deep spatial context encoder and nonstationary joint statistical model for high-resolution SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4407818. doi: 10.1109/TGRS.2021.3137029
|
[132] |
LIN Liupeng, LI Jie, SHEN Huanfeng, et al. Low-resolution fully polarimetric SAR and high-resolution single-polarization SAR image fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216117. doi: 10.1109/TGRS.2021.3121166
|
[133] |
刘恩凡. 地面时敏目标探测制导技术探讨[J]. 飞航导弹, 2016(1): 87–91. doi: 10.16338/j.issn.1009-1319.2016.01.18
LIU Enfan. Discussion on detection and guidance technology of time-sensitive ground target[J]. Aerodynamic Missile Journal, 2016(1): 87–91. doi: 10.16338/j.issn.1009-1319.2016.01.18
|
[134] |
左峰. 视频合成孔径雷达成像算法研究[D]. [博士论文], 电子科技大学, 2020.
ZUO Feng. Research on video synthetic aperture radar imaging algorithm[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
|
[135] |
周畅, 汤子跃, 朱振波, 等. 抗间歇采样转发干扰的波形设计方法[J]. 电子与信息学报, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236
ZHOU Chang, TANG Ziyue, ZHU Zhenbo, et al. Anti-interrupted sampling repeater jamming waveform design method[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236
|
[136] |
全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar wave form countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
|
[137] |
罗雪平, 曹运合, 胡奇, 等. SAR成像导引头干扰建模评估与仿真系统设计[J]. 系统仿真学报, 2021, 33(8): 1927–1937. doi: 10.16182/j.issn1004731x.joss.20-0240
LUO Xueping, CAO Yunhe, HU Qi, et al. SAR imaging seeker interference modeling & evaluation and simulation system design[J]. Journal of System Simulation, 2021, 33(8): 1927–1937. doi: 10.16182/j.issn1004731x.joss.20-0240
|