Citation: | ZHOU Yejian, MA Yan, ZHANG Lei, et al. Review of on-orbit state estimation of space targets with radar imagery[J]. Journal of Radars, 2021, 10(4): 607–621. doi: 10.12000/JR21086 |
[1] |
New Mexico State University. How many satellites in space[EB/OL]. https://web.nmsu.edu/~tnuslein/ICT460/SPECIAL/Page3.htm, 2021.
|
[2] |
央视网. 美俄卫星太空相撞[EB/OL]. http://news.cctv.com/special/satellitecrash/home/index.shtml, 2018.
|
[3] |
Orbital debris quarterly news[R]. NASA Orbital Debris Program Office, 2010, 14(3).
|
[4] |
邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102
XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102
|
[5] |
马岩, 马驰, 解延浩, 等. 基于视频遥感卫星的空间目标光度测量[J]. 光子学报, 2019, 48(12): 1228002. doi: 10.3788/gzxb20194812.1228002
MA Yan, MA Chi, XIE Yanhao, et al. Space target luminosity measurement based on video remote sensing satellites[J]. Acta Photonica Sinica, 2019, 48(12): 1228002. doi: 10.3788/gzxb20194812.1228002
|
[6] |
王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109
WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
|
[7] |
郭崇滨, 夏喜旺, 斯朝铭, 等. 分布式精密编队卫星相对位姿测量技术综述[J]. 航天控制, 2018, 36(6): 83–89. doi: 10.16804/j.cnki.issn1006-3242.2018.06.015
GUO Chongbin, XIA Xiwang, SI Chaoming, et al. A survey of relative position and attitude measurement for formation flying satellite[J]. Aerospace Control, 2018, 36(6): 83–89. doi: 10.16804/j.cnki.issn1006-3242.2018.06.015
|
[8] |
AVENT R K, SHELTON J D, and BROWN P. The ALCOR C-band imaging radar[J]. IEEE Antennas and Propagation Magazine, 1996, 38(3): 16–27. doi: 10.1109/74.511949
|
[9] |
JAIN A and PATEL I. SAR/ISAR imaging of a nonuniformly rotating target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 317–320. doi: 10.1109/7.135457
|
[10] |
BILL D. Wideband radar[J]. Lincoln Laboratory Journal, 2010, 18(2): 87–88.
|
[11] |
CAMP W W, MAYHAN J T, and O’DONNELL R M. Wideband radar for ballistic missile defense and range-doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267–280.
|
[12] |
MIT Lincoln Lab. The annual report summarizes lincoln laboratory[EB/OL]. https://archive.ll.mit.edu/publications/index.html, 2020.
|
[13] |
Fraunhofer FHR Lab. Space observation radar TIRA[EB/OL]. https://www.fhr.fraunhofer.de/en/the-institute/technical-equipment/Space-observation-radar-TIRA.html, 2020.
|
[14] |
VIRGILI B B, LEMMENS S, and KRAG H. Investigation on Envisat attitude motion[R]. Proceedings of the Deorbit Workshop, Noordwijk, The Netherlands, 2014.
|
[15] |
Monitoring the re-entry of the Chinese space station Tiangong-1 with TIRA[EB/OL]. https://www.fhr.fraunhofer.de/en/businessunits/space/monitoring-the-re-entry-of-the-chinese-space-station-tiangong-1-with-tira.html, 2018.
|
[16] |
VELLUTINI E, BIANCHI G, PARDINI C, et al. Monitoring the final orbital decay and the re-entry of Tiangong-1 with the Italian SST ground sensor network[J]. Journal of Space Safety Engineering, 2020, 7(4): 487–501. doi: 10.1016/j.jsse.2020.05.004
|
[17] |
KUCHARSKI D, KIRCHNER G, KOIDL F, et al. Attitude and spin period of space debris envisat measured by satellite laser ranging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7651–7657. doi: 10.1109/TGRS.2014.2316138
|
[18] |
KIRCHNER G, HAUSLEITNER W, and CRISTEA E. Ajisai spin parameter determination using Graz kilohertz satellite laser ranging data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 201–205. doi: 10.1109/TGRS.2006.882254
|
[19] |
GÓMEZ N O and WALKER S J I. Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study[J]. Advances in Space Research, 2015, 56(3): 494–508. doi: 10.1016/j.asr.2014.12.031
|
[20] |
LIN Houyuan and ZHAO Changyin. An estimation of Envisat’s rotational state accounting for the precession of its rotational axis caused by gravity-gradient torque[J]. Advances in Space Research, 2018, 61(1): 182–188. doi: 10.1016/j.asr.2017.10.014
|
[21] |
ZHONG Weijun, WANG Jiasong, JI Weijie, et al. The attitude estimation of three-axis stabilized satellites using hybrid particle swarm optimization combined with radar cross section precise prediction[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering, 2016, 230(4): 713–725. doi: 10.1177/0954410015596178
|
[22] |
LYU Jiangtao, ZHONG Weijun, LIU Hong, et al. Novel approach to determine spinning satellites’ attitude by RCS measurements[J]. Journal of Aerospace Engineering, 2021, 34(4): 04021023. doi: 10.1061/(ASCE)AS.1943-5525.0001253
|
[23] |
D’AMICO S, BENN M, and JØRGENSEN J L. Pose estimation of an uncooperative spacecraft from actual space imagery[J]. International Journal of Space Science and Engineering, 2014, 2(2): 171–189. doi: 10.1504/IJSPACESE.2014.060600
|
[24] |
SHARMA S and D’AMICO S. Reduced-dynamics pose estimation for non-cooperative spacecraft rendezvous using monocular vision[C]. 38th AAS Guidance and Control Conference, Colorado, USA, 2017.
|
[25] |
SAIDI M N, DAOUDI K, KHENCHAF A, et al. Automatic target recognition of aircraft models based on ISAR images[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: IV-685–IV-688.
|
[26] |
LEMMENS S, KRAG H, and ROSEBROCK J. Radar mappings for attitude analysis of objects in orbit[C]. The 6th European Conference on Space Debris, Darmstadt, Germany, 2013: 20–24.
|
[27] |
LEMMENS S and KRAG H. Sensitivity of automated attitude determination form ISAR radar mappings[C]. Advanced Maui Optical and Space Surveillance Technologies Conference(AMOS), Tokyo, Japan, 2013.
|
[28] |
AVILÉS M, MARGARIT G, CANETRI M, et al. Automated attitude estimation from ISAR images[C]. The 7th European Conference on Space Debris, Darmstadt, Germany, 2017: 1–13.
|
[29] |
杨长才, 魏丽芳, 周术诚, 等. 基于单目视觉的空间非合作目标相对姿态估计方法[J]. 福建农林大学学报: 自然科学版, 2015, 44(6): 657–661. doi: 10.13323/j.cnki.j,fafunat.sci.2015.06.017
YANG Changcai, WEI Lifang, ZHOU Shucheng, et al. Monocular vision-based relative attitude estimation for non-cooperative space targets[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2015, 44(6): 657–661. doi: 10.13323/j.cnki.j,fafunat.sci.2015.06.017
|
[30] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
|
[31] |
金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083
JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083
|
[32] |
MA Y, SOATTO S, KOSECKA J, et al. An Invitation to 3-D Vision: From Images to Geometric Models[M]. Cambridge: Springer, 2012.
|
[33] |
HARTLEY R and ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University Press, 2003.
|
[34] |
TOMASI C and TAKEO K. Shape and motion from image streams under orthography: A factorization method[J]. International Journal of Computer Vision, 1992, 9(2): 137–154. doi: 10.1007/BF00129684
|
[35] |
FERRARA M, ARNOLD G, and STUFF M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906–1912. doi: 10.1109/TPAMI.2008.294
|
[36] |
FERRARA M, ARNOLD G, PARKER J T, et al. Robust estimation of shape invariants[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 167–172.
|
[37] |
MCFADDEN F E. Three-dimensional reconstruction from ISAR sequences[C]. Proceedings of SPIE 4744 Sensor Technology and Data Visualization, Orlando, USA, 2002: 58–67.
|
[38] |
王峰, 徐丰, 金亚秋. 利用序列ISAR图像获取空间目标3-D信息的方法[J]. 遥感技术与应用, 2016, 31(5): 900–906. doi: 10.11873/j.issn.1004-0323.2016.05.0900
WANG Feng, XU Feng, and JIN Yaqiu. 3-D information reconstruction of a space target from 2-D ISAR image sequence[J]. Remote Sensing Technology and Application, 2016, 31(5): 900–906. doi: 10.11873/j.issn.1004-0323.2016.05.0900
|
[39] |
WANG Feng, XU Feng, and JIN Yaqiu. Three-dimensional reconstruction from a multiview sequence of sparse ISAR imaging of a space target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 611–620. doi: 10.1109/TGRS.2017.2737988
|
[40] |
LINDSAY J E. Angular glint and the moving, rotating, complex radar target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1968, AES-4(2): 164–173. doi: 10.1109/TAES.1968.5408954
|
[41] |
YIN Hongcheng and HUANG Peikang. Further comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 372–380. doi: 10.1109/TAES.2008.4517012
|
[42] |
刘承兰, 高勋章, 黎湘. 干涉式逆合成孔径雷达成像技术综述[J]. 信号处理, 2011, 27(5): 737–748. doi: 10.3969/j.issn.1003-0530.2011.05.016
LIU Chenglan, GAO Xunzhang, and LI Xiang. Review of interferometric ISAR Imaging[J]. Signal Processing, 2011, 27(5): 737–748. doi: 10.3969/j.issn.1003-0530.2011.05.016
|
[43] |
李军, 王冠勇, 韦立登, 等. 基于毫米波多基线InSAR的雷达测绘技术[J]. 雷达学报, 2019, 8(6): 820–830. doi: 10.12000/JR19098
LI Jun, WANG Guanyong, WEI Lideng, et al. Radar mapping technology based on millimeter-wave multi-baseline InSAR[J]. Journal of Radars, 2019, 8(6): 820–830. doi: 10.12000/JR19098
|
[44] |
田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060
TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060
|
[45] |
MIT. MIT Lincoln Laboratory 2008 Annual Report[R]. 2008.
|
[46] |
FORRESTER N T. Surface reconstruction from interferometric ISAR data[D]. [Master dissertation], Massachusetts Institute of Technology, 2014.
|
[47] |
ZHAO Lizhi, GAO Meiguo, MARTORELLA M, et al. Bistatic three-dimensional interferometric ISAR image reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 951–961. doi: 10.1109/TAES.2014.130702
|
[48] |
YUAN Zhengkun, WANG Junling, ZHAO Lizhi, et al. Long orbit arc InISAR imaging of space targets with monostatic radar[J]. IEEE Sensors Journal, 2021, 21(5): 5983–5994. doi: 10.1109/JSEN.2020.3039893
|
[49] |
SHAO Shuai, ZHANG Lei, LIU Hongwei, et al. Images of 3-D maneuvering motion targets for interferometric ISAR with 2-D joint sparse reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, in press, 2020.
|
[50] |
MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution 3D “snapshot” ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630–642. doi: 10.1109/7.937474
|
[51] |
ZHOU Yejian, ZHANG Lei, CAO Yunhe, et al. Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1698–1711. doi: 10.1109/TAES.2018.2875503
|
[52] |
王志会, 王壮, 蒋李兵. 基于线特征差分投影的空间目标姿态估计方法[J]. 信号处理, 2017, 33(10): 1377–1384. doi: 10.16798/j.issn.1003-530.2017.10.014
WANG Zhihui, WANG Zhuang, and JIANG Libing. Pose estimation method for space targets based on the linear features differencing projection[J]. Journal of Signal Processing, 2017, 33(10): 1377–1384. doi: 10.16798/j.issn.1003-530.2017.10.014
|
[53] |
XIE Pengfei, ZHANG Lei, DU Chuan, et al. Space target attitude estimation from ISAR image sequences with key point extraction network[J]. IEEE Signal Processing Letters, 2021, 28: 1041–1045. doi: 10.1109/LSP.2021.3075606
|
[54] |
ZHOU Yejian, ZHANG Lei, and CAO Yunhe. Dynamic estimation of spin spacecraft based on multiple-station ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2977–2989. doi: 10.1109/TGRS.2019.2959270
|
[55] |
ZHOU Yejian, ZHANG Lei, CAO Yunhe, et al. Optical-and-radar image fusion for dynamic estimation of spin satellites[J]. IEEE Transactions on Image Processing, 2019, 29: 2963–2976. doi: 10.1109/TIP.2019.2955248
|
[56] |
SUWA K, WAKAYAMA T, and IWAMOTO M. Three-dimensional target geometry and target motion estimation method using multistatic ISAR movies and its performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2361–2373. doi: 10.1109/TGRS.2010.2095423
|
[57] |
ZHOU Yejian, ZHANG Lei, and CAO Yunhe. Attitude estimation for space targets by exploiting the quadratic phase coefficients of inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3858–3872. doi: 10.1109/TGRS.2018.2888631
|
[58] |
ZHOU Yejian, ZHANG Lei, WEI Shaopeng, et al. Dynamic analysis of spin satellites through the quadratic phase estimation in multiple-station radar images[J]. IEEE Transactions on Computational Imaging, 2020, 6: 894–907. doi: 10.1109/TCI.2020.2995052
|
[59] |
LEFFERTS E J, MARKLEY F L, and SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance,Control,and Dynamics, 1982, 5(5): 417–429. doi: 10.2514/3.56190
|
[60] |
KIM S G, CRASSIDIS J L, CHENG Yang, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance,Control,and Dynamics, 2007, 30(1): 133–143. doi: 10.2514/1.22377
|
[61] |
MARKLEY F L. Attitude error representations for Kalman filtering[J]. Journal of Guidance,Control,and Dynamics, 2003, 26(2): 311–317. doi: 10.2514/2.5048
|
[62] |
OPROMOLLA R and NOCERINO A. Uncooperative spacecraft relative navigation with LIDAR-based unscented Kalman filter[J]. IEEE Access, 2019, 7: 180012–180026. doi: 10.1109/ACCESS.2019.2959438
|
[63] |
CAO Lu, QIAO Dong, and CHEN Xiaoqian. Laplace ℓ1 Huber based cubature Kalman filter for attitude estimation of small satellite[J]. Acta Astronautica, 2018, 148: 48–56. doi: 10.1016/j.actaastro.2018.04.020
|
[64] |
VANDYKE M C, JANA L S, and HALL C D. Unscented Kalman filtering for spacecraft attitude state and parameter estimation[J]. Advances in the Astronautical Sciences, 2004, 118(1): 217–228.
|
[65] |
WENDEL J, MEISTER O, SCHLAILE C, et al. An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter[J]. Aerospace Science and Technology, 2006, 10(6): 527–533. doi: 10.1016/j.ast.2006.04.002
|
[66] |
CAROZZA L and BEVILACQUA A. Error analysis of satellite attitude determination using a vision-based approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83: 19–29. doi: 10.1016/j.isprsjprs.2013.05.007
|
[67] |
NISTÉR D, NARODITSKY O, and BERGEN J. Visual odometry for ground vehicle applications[J]. Journal of Field Robotics, 2006, 23(1): 3–20. doi: 10.1002/rob.20103
|
[68] |
KOUYAMA T, KANEMURA A, KATO S, et al. Satellite attitude determination and map projection based on robust image matching[J]. Remote Sensing, 2017, 9(1): 90. doi: 10.3390/rs9010090
|