Volume 10 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
GUO Zhongyi, WANG Yunlai, WANG Yanzhe, et al. Research advances in vortex radar imaging technology[J]. Journal of Radars, 2021, 10(5): 665–679. doi: 10.12000/JR21075
Citation: GUO Zhongyi, WANG Yunlai, WANG Yanzhe, et al. Research advances in vortex radar imaging technology[J]. Journal of Radars, 2021, 10(5): 665–679. doi: 10.12000/JR21075

Research Advances in Vortex Radar Imaging Technology

DOI: 10.12000/JR21075
Funds:  The National Natural Science Foundation of China (61775050), Fundamental Research Funds for the Central Universities of China (PA2019GDZC0098)
More Information
  • Corresponding author: GUO Zhongyi, guozhongyi@hfut.edu.cn
  • Received Date: 2021-06-07
  • Rev Recd Date: 2021-08-02
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-01
  • Vortex electromagnetic wave carries the Orbital Angular Momentum (OAM), and thus has a spiral wavefront structure, which contains the azimuthal information of the target in the echo signal when performing radar imaging compared with planar waves. Hence, this kind of electromagnetic wave shows great potential for various applications in the field of radar detection and imaging, and it is expected to become the development direction of new-system radars. This paper describes in detail the research progress in vortex radar imaging technology in recent years. First, the characteristics of the vortex electromagnetic wave and the principles of imaging using a uniform circular array are introduced. Then the paper reviews the developmental history and research status of vortex radar imaging technology, according to three research directions: vortex radar imaging model, vortex radar gaze imaging algorithm, and vortex radar motion imaging. Finally, the prospects for the development of vortex radar imaging have been presented, along with the key scientific issues and trends for the future developments of vortex radar imaging.

     

  • loading
  • [1]
    AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060
    [2]
    江涛, 李敏慧, 刘瑾. 高分辨率SAR综合电子设备技术研究[J]. 现代雷达, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002

    JIANG Tao, LI Minhui, and LIU Jin. A study on synthetic electronic instrument of high resolution SAR[J]. Modern Radar, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002
    [3]
    朱晓秀, 胡文华, 郭宝锋. 基于压缩感知理论的稀疏孔径ISAR成像[J]. 现代雷达, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005

    ZHU Xiaoxiu, HU Wenhua, and GUO Baofeng. ISAR imaging by exploiting sparse apertures based on compressive sensing[J]. Modern Radar, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005
    [4]
    MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [5]
    WILLNER A E, HUANG H, YAN Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066
    [6]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [7]
    GUO Zhongyi, QU Shiliang, and LIU Shutian. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286–289. doi: 10.1016/j.optcom.2006.12.023
    [8]
    CHENG Mingjian, GUO Lixin, LI Jiangting, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America A, 2016, 33(8): 1442–1450. doi: 10.1364/JOSAA.33.001442
    [9]
    VAZIRI A, WEIHS G, and ZEILINGER A. Superpositions of the orbital angular momentum for applications in quantum experiments[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S47–S51. doi: 10.1088/1464-4266/4/2/367
    [10]
    郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593

    GUO Zhongyi, GONG Chaofan, LIU Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
    [11]
    DEDO M I, WANG Zikun, GUO Kai, et al. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN)[J]. Optics Communications, 2020, 456: 124696. doi: 10.1016/j.optcom.2019.124696
    [12]
    郭忠义, 潘珍珍, 龚超凡, 等. OAM光通信路由器件研究[J]. 通信学报, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184

    GUO Zhongyi, PAN Zhenzhen, GONG Chaofan, et al. Research on router device of OAM optical communication[J]. Journal on Communications, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184
    [13]
    郭忠义, 刘洪郡, 李晶晶, 等. 声涡旋信息应用研究进展[J]. 物理学报, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826

    GUO Zhongyi, LIU Hongjun, LI Jingjing, et al. Research progress of applications of acoustic-vortex information[J]. Acta Physica Sinica, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826
    [14]
    GONG Chaofan, LI Jingjing, GUO Kai, et al. Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction[J]. Chinese Physics B, 2020, 29(10): 104301. doi: 10.1088/1674-1056/ab9c11
    [15]
    GUO Zhongyi, LIU Hongjun, ZHOU Hong, et al. High-order acoustic vortex field generation based on a metasurface[J]. Physical Review E, 2019, 100(5): 053315. doi: 10.1103/PhysRevE.100.053315
    [16]
    TRINDER J R. Parabolic reflector[P]. WO2005069443A1, 2005.
    [17]
    THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [18]
    YANG Yang, LIU Gao, SHEN Fei, et al. Generating and detecting broad-band underwater multiple OAMs based on water-immersed array[J]. IEEE Access, 2020, 8: 149586–149594. doi: 10.1109/ACCESS.2020.3016389
    [19]
    YANG Yang, GONG Yubin, GUO Kai, et al. Broad-band multiple OAMs’ generation with eight-arm archimedean spiral antenna (ASA)[J]. IEEE Access, 2020, 8: 53232–53239. doi: 10.1109/ACCESS.2020.2980751
    [20]
    GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
    [21]
    YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601
    [22]
    SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545
    [23]
    WANG Lulu, CHEN Huiyong, GUO Kai, et al. An inner- and outer-fed dual-arm archimedean spiral antenna for generating multiple orbital angular momentum modes[J]. Electronics, 2019, 8(2): 251. doi: 10.3390/electronics8020251
    [24]
    SHEN Fei, YIN Chaoyi, GUO Kai, et al. Low-cost dual-band multipolarization aperture-shared antenna with single-layer substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1337–1341. doi: 10.1109/LAWP.2019.2916321
    [25]
    郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    [26]
    TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188.
    [27]
    LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [28]
    CHEN Rui, ZHOU Hong, LONG Wenxuan, et al. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems[J]. China Communications, 2020, 17(9): 119–127. doi: 10.23919/JCC.2020.09.010
    [29]
    LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006
    [30]
    ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 2019, 3(3): 5500404. doi: 10.1109/LSENS.2019.2900227
    [31]
    ZHENG Jiayu, ZHENG Shilie, SHAO Zhenlei, et al. Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum[J]. Journal of Applied Physics, 2018, 124(16): 164907. doi: 10.1063/1.5050448
    [32]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [33]
    LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698
    [34]
    LIU Kang, CHENG Yongqiang, LI Xiang, et al. Passive OAM-based radar imaging with Single-In-Multiple-Out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840–842. doi: 10.1109/LMWC.2018.2852146
    [35]
    LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914
    [36]
    CHEN Yiling, ZHENG Shilie, JIN Xiaofeng, et al. Single-frequency computational imaging using OAM-carrying electromagnetic wave[J]. Journal of Applied Physics, 2017, 121(18): 184506. doi: 10.1063/1.4983358
    [37]
    LIU Kang, CHENG Yongqiang, LI Xiang, et al. Study on the theory and method of vortex-electromagnetic-wave-based radar imaging[J]. IET Microwaves, Antennas & Propagation, 2016, 10(9): 961–968. doi: 10.1049/iet-map.2015.0842
    [38]
    LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [39]
    ZENG Yanzhi, WANG Yang, CHEN Zhihui, et al. Two-dimensional OAM radar imaging using uniform circular antenna arrays[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4. doi: 10.23919/EuCAP48036.2020.9135917.
    [40]
    孙丽华, 闫晓鹏, 刘强, 等. 基于PM算法的涡旋电磁波引信超分辨测向方法[J]. 北京航空航天大学学报, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020.

    SUN Lihua, YAN Xiaopeng, LIU Qiang, et al. PM based super_resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020.
    [41]
    YUAN Tiezhu, LIU Hongyan, CHENG Yongqiang, et al. Orbital-angular-momentum-based electromagnetic vortex imaging by least-squares method[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6645–6648. doi: 10.1109/IGARSS.2016.7730735.
    [42]
    LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
    [43]
    ZHAO Hao and WANG Kaizhi. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2020: 446–450. doi: 10.1109/ICSIP49896.2020.9339258.
    [44]
    JIANG Yanwen, LIU Kang, WANG Hongqiang, et al. Orbital-angular-momentum-based ISAR imaging at terahertz frequencies[J]. IEEE Sensors Journal, 2018, 18(22): 9230–9235. doi: 10.1109/JSEN.2018.2869047
    [45]
    WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
    [46]
    WANG Lin, TAO Lujing, LI Zhongyu, et al. Three dimensional electromagnetic vortex radar imaging based on the modified RD algorithm[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266329.
    [47]
    GHALEH S R, AHMADI-KANDJANI S, KHERADMAND R, et al. Improved edge detection in computational ghost imaging by introducing orbital angular momentum[J]. Applied Optics, 2018, 57(32): 9609–9614. doi: 10.1364/AO.57.009609
    [48]
    COCHENOUR B, RODGERS L, LAUX A, et al. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)[C]. Proceedings of SPIE 10186 Ocean Sensing and Monitoring IX, Anaheim, USA, 2017: 1018603. doi: 10.1117/12.2264626.
    [49]
    PAVONE S C, SORBELLO G and DONATO L D. On the orbital angular momentum incident fields in linearized microwave imaging[J]. Sensors, 2020, 20(7): 1905. doi: 10.3390/s20071905
    [50]
    JACKSON J D. Classical Electrodynamics[M]. 3th ed. New York: Wiley, 1998.
    [51]
    刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034

    LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
    [52]
    ZHANG Zongtang, XIAO Shaoqiu, LI Yan, et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 521–524. doi: 10.1109/LAWP.2016.2586975
    [53]
    ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885
    [54]
    HAN Jiaqi, LI Long, YI Hao, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11): 3470–3478. doi: 10.1364/OME.8.003470
    [55]
    HAN Jiaqi, LI Long, YI Hao, et al. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface[J]. Japanese Journal of Applied Physics, 2018, 57(12): 120303. doi: 10.7567/JJAP.57.120303
    [56]
    ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468
    [57]
    WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429
    [58]
    YIN Zhiping, ZHENG Qun, GUO Kai, et al. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array[J]. Applied Sciences, 2019, 9(15): 2949. doi: 10.3390/app9152949
    [59]
    刘康. 电磁涡旋成像理论与方法研究[D]. [博士论文], 国防科技大学, 2017: 28–29.

    LIU Kang. Study on the theory and method of electromagnetic vortex imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2017: 28–29.
    [60]
    郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [61]
    YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169
    [62]
    QIN Yuliang, LIU Kang, CHENG Yongqiang, et al. Sidelobe suppression and beam collimation in the generation of vortex electromagnetic waves for radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 1289–1292. doi: 10.1109/LAWP.2016.2633008
    [63]
    YUAN Tiezhu, CHENG Yongqiang, WANG Hongqiang, et al. Beam steering for electromagnetic vortex imaging using uniform circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 704–707. doi: 10.1109/LAWP.2016.2600404
    [64]
    GUO Shaoqing, HE Zi, FAN Zhenhong, et al. CUCA based equivalent fractional order OAM mode for electromagnetic vortex imaging[J]. IEEE Access, 2020, 8: 91070–91075. doi: 10.1109/ACCESS.2020.2995149
    [65]
    OPENNHEIM A V, WILLSKY A S, and NAWAB S H. Signal and System[M]. 2nd ed. Prentice-Hall, 1997.
    [66]
    POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
    [67]
    LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936
    [68]
    LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    [69]
    BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
    [70]
    杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012

    DU Yongxing, TONG Zongjun, QIN Ling, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar Science and Technology, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
    [71]
    WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Vortex SAR imaging method based on OAM beams design[J]. IEEE Sensors Journal, 2019, 19(24): 11873–11879. doi: 10.1109/JSEN.2019.2937976
    [72]
    SHEN Yizhu, YANG Jiawei, MENG Hongfu, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Applied Physics Letters, 2018, 112(14): 141901. doi: 10.1063/1.5023327
    [73]
    张倬钒. 平面螺旋轨道角动量电磁波及其应用研究[D]. [硕士论文], 浙江大学, 2017: 14–15.

    ZHANG Zhuofan. Plane spiral orbital angular momentum waves and its applications[D]. [Master dissertation], Zhejiang University, 2017: 14–15.
    [74]
    CHEN Menglin, JIANG Lijun, and SHA W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362
    [75]
    CHEN Menglin, JIANG Lijun, and SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5059) PDF downloads(717) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint