Citation: | GUO Zhongyi, WANG Yunlai, WANG Yanzhe, et al. Research advances in vortex radar imaging technology[J]. Journal of Radars, 2021, 10(5): 665–679. doi: 10.12000/JR21075 |
[1] |
AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060
|
[2] |
江涛, 李敏慧, 刘瑾. 高分辨率SAR综合电子设备技术研究[J]. 现代雷达, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002
JIANG Tao, LI Minhui, and LIU Jin. A study on synthetic electronic instrument of high resolution SAR[J]. Modern Radar, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002
|
[3] |
朱晓秀, 胡文华, 郭宝锋. 基于压缩感知理论的稀疏孔径ISAR成像[J]. 现代雷达, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005
ZHU Xiaoxiu, HU Wenhua, and GUO Baofeng. ISAR imaging by exploiting sparse apertures based on compressive sensing[J]. Modern Radar, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005
|
[4] |
MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
|
[5] |
WILLNER A E, HUANG H, YAN Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066
|
[6] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
|
[7] |
GUO Zhongyi, QU Shiliang, and LIU Shutian. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286–289. doi: 10.1016/j.optcom.2006.12.023
|
[8] |
CHENG Mingjian, GUO Lixin, LI Jiangting, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America A, 2016, 33(8): 1442–1450. doi: 10.1364/JOSAA.33.001442
|
[9] |
VAZIRI A, WEIHS G, and ZEILINGER A. Superpositions of the orbital angular momentum for applications in quantum experiments[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S47–S51. doi: 10.1088/1464-4266/4/2/367
|
[10] |
郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
GUO Zhongyi, GONG Chaofan, LIU Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
|
[11] |
DEDO M I, WANG Zikun, GUO Kai, et al. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN)[J]. Optics Communications, 2020, 456: 124696. doi: 10.1016/j.optcom.2019.124696
|
[12] |
郭忠义, 潘珍珍, 龚超凡, 等. OAM光通信路由器件研究[J]. 通信学报, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184
GUO Zhongyi, PAN Zhenzhen, GONG Chaofan, et al. Research on router device of OAM optical communication[J]. Journal on Communications, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184
|
[13] |
郭忠义, 刘洪郡, 李晶晶, 等. 声涡旋信息应用研究进展[J]. 物理学报, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826
GUO Zhongyi, LIU Hongjun, LI Jingjing, et al. Research progress of applications of acoustic-vortex information[J]. Acta Physica Sinica, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826
|
[14] |
GONG Chaofan, LI Jingjing, GUO Kai, et al. Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction[J]. Chinese Physics B, 2020, 29(10): 104301. doi: 10.1088/1674-1056/ab9c11
|
[15] |
GUO Zhongyi, LIU Hongjun, ZHOU Hong, et al. High-order acoustic vortex field generation based on a metasurface[J]. Physical Review E, 2019, 100(5): 053315. doi: 10.1103/PhysRevE.100.053315
|
[16] |
TRINDER J R. Parabolic reflector[P]. WO2005069443A1, 2005.
|
[17] |
THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
|
[18] |
YANG Yang, LIU Gao, SHEN Fei, et al. Generating and detecting broad-band underwater multiple OAMs based on water-immersed array[J]. IEEE Access, 2020, 8: 149586–149594. doi: 10.1109/ACCESS.2020.3016389
|
[19] |
YANG Yang, GONG Yubin, GUO Kai, et al. Broad-band multiple OAMs’ generation with eight-arm archimedean spiral antenna (ASA)[J]. IEEE Access, 2020, 8: 53232–53239. doi: 10.1109/ACCESS.2020.2980751
|
[20] |
GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
|
[21] |
YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601
|
[22] |
SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545
|
[23] |
WANG Lulu, CHEN Huiyong, GUO Kai, et al. An inner- and outer-fed dual-arm archimedean spiral antenna for generating multiple orbital angular momentum modes[J]. Electronics, 2019, 8(2): 251. doi: 10.3390/electronics8020251
|
[24] |
SHEN Fei, YIN Chaoyi, GUO Kai, et al. Low-cost dual-band multipolarization aperture-shared antenna with single-layer substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1337–1341. doi: 10.1109/LAWP.2019.2916321
|
[25] |
郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091
GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
|
[26] |
TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188.
|
[27] |
LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
|
[28] |
CHEN Rui, ZHOU Hong, LONG Wenxuan, et al. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems[J]. China Communications, 2020, 17(9): 119–127. doi: 10.23919/JCC.2020.09.010
|
[29] |
LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006
|
[30] |
ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 2019, 3(3): 5500404. doi: 10.1109/LSENS.2019.2900227
|
[31] |
ZHENG Jiayu, ZHENG Shilie, SHAO Zhenlei, et al. Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum[J]. Journal of Applied Physics, 2018, 124(16): 164907. doi: 10.1063/1.5050448
|
[32] |
LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
|
[33] |
LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698
|
[34] |
LIU Kang, CHENG Yongqiang, LI Xiang, et al. Passive OAM-based radar imaging with Single-In-Multiple-Out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840–842. doi: 10.1109/LMWC.2018.2852146
|
[35] |
LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914
|
[36] |
CHEN Yiling, ZHENG Shilie, JIN Xiaofeng, et al. Single-frequency computational imaging using OAM-carrying electromagnetic wave[J]. Journal of Applied Physics, 2017, 121(18): 184506. doi: 10.1063/1.4983358
|
[37] |
LIU Kang, CHENG Yongqiang, LI Xiang, et al. Study on the theory and method of vortex-electromagnetic-wave-based radar imaging[J]. IET Microwaves, Antennas & Propagation, 2016, 10(9): 961–968. doi: 10.1049/iet-map.2015.0842
|
[38] |
LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
|
[39] |
ZENG Yanzhi, WANG Yang, CHEN Zhihui, et al. Two-dimensional OAM radar imaging using uniform circular antenna arrays[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4. doi: 10.23919/EuCAP48036.2020.9135917.
|
[40] |
孙丽华, 闫晓鹏, 刘强, 等. 基于PM算法的涡旋电磁波引信超分辨测向方法[J]. 北京航空航天大学学报, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020.
SUN Lihua, YAN Xiaopeng, LIU Qiang, et al. PM based super_resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020.
|
[41] |
YUAN Tiezhu, LIU Hongyan, CHENG Yongqiang, et al. Orbital-angular-momentum-based electromagnetic vortex imaging by least-squares method[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6645–6648. doi: 10.1109/IGARSS.2016.7730735.
|
[42] |
LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
|
[43] |
ZHAO Hao and WANG Kaizhi. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2020: 446–450. doi: 10.1109/ICSIP49896.2020.9339258.
|
[44] |
JIANG Yanwen, LIU Kang, WANG Hongqiang, et al. Orbital-angular-momentum-based ISAR imaging at terahertz frequencies[J]. IEEE Sensors Journal, 2018, 18(22): 9230–9235. doi: 10.1109/JSEN.2018.2869047
|
[45] |
WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
|
[46] |
WANG Lin, TAO Lujing, LI Zhongyu, et al. Three dimensional electromagnetic vortex radar imaging based on the modified RD algorithm[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266329.
|
[47] |
GHALEH S R, AHMADI-KANDJANI S, KHERADMAND R, et al. Improved edge detection in computational ghost imaging by introducing orbital angular momentum[J]. Applied Optics, 2018, 57(32): 9609–9614. doi: 10.1364/AO.57.009609
|
[48] |
COCHENOUR B, RODGERS L, LAUX A, et al. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)[C]. Proceedings of SPIE 10186 Ocean Sensing and Monitoring IX, Anaheim, USA, 2017: 1018603. doi: 10.1117/12.2264626.
|
[49] |
PAVONE S C, SORBELLO G and DONATO L D. On the orbital angular momentum incident fields in linearized microwave imaging[J]. Sensors, 2020, 20(7): 1905. doi: 10.3390/s20071905
|
[50] |
JACKSON J D. Classical Electrodynamics[M]. 3th ed. New York: Wiley, 1998.
|
[51] |
刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
|
[52] |
ZHANG Zongtang, XIAO Shaoqiu, LI Yan, et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 521–524. doi: 10.1109/LAWP.2016.2586975
|
[53] |
ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885
|
[54] |
HAN Jiaqi, LI Long, YI Hao, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11): 3470–3478. doi: 10.1364/OME.8.003470
|
[55] |
HAN Jiaqi, LI Long, YI Hao, et al. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface[J]. Japanese Journal of Applied Physics, 2018, 57(12): 120303. doi: 10.7567/JJAP.57.120303
|
[56] |
ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468
|
[57] |
WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429
|
[58] |
YIN Zhiping, ZHENG Qun, GUO Kai, et al. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array[J]. Applied Sciences, 2019, 9(15): 2949. doi: 10.3390/app9152949
|
[59] |
刘康. 电磁涡旋成像理论与方法研究[D]. [博士论文], 国防科技大学, 2017: 28–29.
LIU Kang. Study on the theory and method of electromagnetic vortex imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2017: 28–29.
|
[60] |
郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
|
[61] |
YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169
|
[62] |
QIN Yuliang, LIU Kang, CHENG Yongqiang, et al. Sidelobe suppression and beam collimation in the generation of vortex electromagnetic waves for radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 1289–1292. doi: 10.1109/LAWP.2016.2633008
|
[63] |
YUAN Tiezhu, CHENG Yongqiang, WANG Hongqiang, et al. Beam steering for electromagnetic vortex imaging using uniform circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 704–707. doi: 10.1109/LAWP.2016.2600404
|
[64] |
GUO Shaoqing, HE Zi, FAN Zhenhong, et al. CUCA based equivalent fractional order OAM mode for electromagnetic vortex imaging[J]. IEEE Access, 2020, 8: 91070–91075. doi: 10.1109/ACCESS.2020.2995149
|
[65] |
OPENNHEIM A V, WILLSKY A S, and NAWAB S H. Signal and System[M]. 2nd ed. Prentice-Hall, 1997.
|
[66] |
POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
|
[67] |
LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936
|
[68] |
LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
|
[69] |
BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
|
[70] |
杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
DU Yongxing, TONG Zongjun, QIN Ling, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar Science and Technology, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012
|
[71] |
WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Vortex SAR imaging method based on OAM beams design[J]. IEEE Sensors Journal, 2019, 19(24): 11873–11879. doi: 10.1109/JSEN.2019.2937976
|
[72] |
SHEN Yizhu, YANG Jiawei, MENG Hongfu, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Applied Physics Letters, 2018, 112(14): 141901. doi: 10.1063/1.5023327
|
[73] |
张倬钒. 平面螺旋轨道角动量电磁波及其应用研究[D]. [硕士论文], 浙江大学, 2017: 14–15.
ZHANG Zhuofan. Plane spiral orbital angular momentum waves and its applications[D]. [Master dissertation], Zhejiang University, 2017: 14–15.
|
[74] |
CHEN Menglin, JIANG Lijun, and SHA W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362
|
[75] |
CHEN Menglin, JIANG Lijun, and SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
|