Volume 10 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
WANG Jianqiu, LIU Kang, WANG Yu, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10(5): 680–690. doi: 10.12000/JR21054
Citation: WANG Jianqiu, LIU Kang, WANG Yu, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10(5): 680–690. doi: 10.12000/JR21054

Resolution Analysis of Vortex Electromagnetic Radar Imaging

DOI: 10.12000/JR21054
Funds:  The National Natural Science Foundation of China (61801486, 61921001)
More Information
  • Corresponding author: LIU Kang, liukang1117@126.com
  • Received Date: 2021-04-23
  • Rev Recd Date: 2021-06-09
  • Available Online: 2021-06-22
  • Publish Date: 2021-06-22
  • The vortex ElectroMagnetic (EM) wave, whose phase wavefront is modulated by the Orbital Angular Momentum (OAM), has received immense attention, especially in the field of forward-looking radar imaging. Based on the fundamental principle and imaging method of the vortex EM radar, the azimuth resolution was studied in this paper. First, the circumstance of considering the Bessel amplitude term was analyzed, indicating that the azimuth resolution was determined by the effective scope of OAM modes. Then, an effective method for calculating the scope of OAM modes was proposed, including the expressions of azimuth resolution, spatial resolution, and super-resolution were characterized. Finally, the fundamental resolution performance with different influencing factors was analyzed via simulations. The analysis showed that changing the wavelength aperture ratio and imaging elevation could increase the effective scope of OAM modes, which improved the azimuth resolution. Through data fitting, the approximate expressions of the effective scope of OAM modes and the resolution of the super-real aperture radar with respect to the wavelength aperture ratio and imaging elevation were obtained separately, providing a reference for the parameters design and optimization of vortex EM wave radar.

     

  • loading
  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 89–181.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Electronic Industry Press, 2005: 89–181.
    [2]
    CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
    [3]
    王小谟, 张光义. 雷达与探测: 信息化战争的火眼金睛[M]. 第2版北京: 国防工业出版社, 2008: 185–230.

    WANG Xiaomo and ZHANG Guangyi. Radar and Detection: The Golden Eye of Information Warfare[M]. Second Edition Beijing: National Defense Industry Press, 2008: 185–230.
    [4]
    BAMLER R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706–713. doi: 10.1109/36.158864
    [5]
    XING Mengdao, WU Renbiao, LAN Jinqiao, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141–144. doi: 10.1109/LGRS.2004.824766
    [6]
    张磊. 高分辨SAR/ISAR成像及误差补偿技术研究[D]. [博士论文], 西安电子科技大学, 2012.

    ZHANG Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph. D. dissertation], Xidian University, 2012.
    [7]
    吴迪, 朱岱寅, 朱兆达. 机载雷达单脉冲前视成像算法[J]. 中国图象图形学报, 2010, 15(3): 462–469. doi: 10.11834/jig.20100317

    WU Di, ZHU Daiyin, and ZHU Zhaoda. Research on nomopulse forward-looking imaging algorithm for airborne radar[J]. Journal of Image and Graphics, 2010, 15(3): 462–469. doi: 10.11834/jig.20100317
    [8]
    张慧. 微波毫米波阵列成像关键技术研究[D]. [博士论文], 东南大学, 2016.

    ZHANG Hui. Investigations on microwave and millimeter wave array imaging key technologies[D]. [Ph. D. dissertation], Southeast University, 2016.
    [9]
    张寅. 运动平台前视雷达超分辨成像理论与方法[D]. [博士论文], 电子科技大学, 2016.

    ZHANG Yin. Theory and method of superresolution imaging for forward-looking radar of moving platform[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2016.
    [10]
    何学智. 微波凝视关联成像的信息处理方法与仿真[D]. [博士论文], 中国科学技术大学, 2013.

    HE Xuezhi. The information processing methods and simulations in microwave staring correlated imaging[D]. [Ph. D. dissertation], University of Science and Technology of China, 2013.
    [11]
    杨阳. 涡旋电磁波的产生及其在成像领域的应用[D]. [博士论文], 电子科技大学, 2020.

    YANG Yang. The generation of the vortex electromagnetic waves and its application in imaging region[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [12]
    HUMBLET J. Sur le moment d’impulsion d’une onde électromagnétique[J]. Physica, 1943, 10(7): 585–603. doi: 10.1016/S0031-8914(43)90626-3
    [13]
    POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A, 1909, 82(557): 560–567. doi: 10.1098/rspa.1909.0060
    [14]
    BETH R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115–125. doi: 10.1103/PhysRev.50.115
    [15]
    MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [16]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [17]
    LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [18]
    ZENG Yanzhi, WANG Yang, CHEN Zhihui, et al. Two-dimensional OAM radar imaging using uniform circular antenna arrays[C]. The 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020: 1–4. doi: 10.23919/EuCAP48036.2020.9135917.
    [19]
    CHEN Rui, LONG Wenxuan, GAO Yue, et al. Orbital angular momentum-based two-dimensional super-resolution targets imaging[C]. 2018 IEEE Global Conference on Signal and information Processing, Anaheim, USA, 2018: 1243–1246. doi: 10.1109/GlobalSIP.2018.8646368.
    [20]
    LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
    [21]
    LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698
    [22]
    LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [23]
    LIU Kang, CHENG Yongqiang, LI Xiang, et al. Microwave-sensing technology using orbital angular momentum: Overview of its advantages[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 112–118. doi: 10.1109/MVT.2018.2890673
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3143) PDF downloads(387) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint