Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
Citation: Liang Hao, Cui Chen, Yu Jian. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array[J]. Journal of Radars, 2016, 5(3): 254-264. doi: 10.12000/JR16016

Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

DOI: 10.12000/JR16016
Funds:

The National Natural Science Foundation of China (60702015), Anhui Province Foundation for Science and Technology Research Project (1310115188), Scientific Research Foundation of Electronic Engineering Institute (KY13A197, KY13A200, KY13A206)

  • Received Date: 2016-01-21
  • Rev Recd Date: 2016-03-29
  • Publish Date: 2016-06-28
  • In this study, we investigate the estimation of the Two-Dimensional (2D) Direction Of Arrival (DOA) in monostatic multiple-input-multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

     

  • [1]
    Huleihel W, Tabrikian J, and Shavit R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075-5089.
    [2]
    Wang P, Li H B, and Himed B. A parametric moving target detector for distributed MIMO radar in non-homogeneous environment[J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2282-2294.
    [3]
    Zhang X, Huang Y, Chen C, et al.. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar[J]. IET Radar, Sonar Navigation, 2012, 6(8): 796-801.
    [4]
    Zhang X and Xu D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Eletronics Letters, 2011, 47(4): 283-284.
    [5]
    文才, 王彤. 单基地MIMO雷达降维酉ESPRIT算法[J]. 系统工程与电子技术, 2014, 36(6): 1062-1067. Wen C and Wang T. Reduced-dimensional unitary ESPRIT algorithm for monostatic MIMO radar[J]. Systems Engineering and Electronics, 2014, 36(6): 1062-1067.
    [6]
    Wang W, Wang X, Song H, et al.. Conjugate ESPRIT for DOA estimation in monostatic MIMO radar[J]. Signal Processing, 2013, 93(7): 2070-2075.
    [7]
    Chen H W, Li X, Jiang W D, et al.. MIMO radar sensitivity analysis of antenna position for direction finding[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5201-5216.
    [8]
    Chen H W, Zhou W, Yang J, et al.. Manifold sensitivity analysis for MIMO radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 999-1003.
    [9]
    Chen H W, Yang J, Zhou W, et al.. Manifold studies on fundamental limits of direction finding multiple-input multiple-output radar systems[J]. IET Radar, Sonar Navigation, 2012, 6(8): 708-718.
    [10]
    Li J F, Zhang X F, Chen W Y, et al.. Reduced-dimensional ESPRIT for direction finding in monostatic MIMO radar with double parallel uniform linear arrays[J]. Wireless Personal Communications, 2014, 77(1): 1-19.
    [11]
    王伟, 王晓萌, 李欣, 等. 基于MUSIC算法的L型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2014, 36(8): 1954-1959. Wang Wei, Wang Xiao-meng, Li Xin, et al.. Reduced-dimensional DOA estimation based on MUSIC algorithm in MIMO radar with L-shaped array[J]. Journal of Electronics Information Technology, 2014, 36(8): 1954-1959.
    [12]
    梁浩, 崔琛, 代林, 等. 基于ESPRIT算法的L型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2015, 37(8): 1928-1935. Liang Hao, Cui Chen, Dai Lin, et al.. Reduced-dimensional DOA estimation based on ESPRIT algorithm in MIMO radar with L-shaped array[J]. Journal of Electronics Information Technology, 2015, 37(8): 1928-1935.
    [13]
    Li J F and Zhang X F. Unitary reduced-dimensional estimation of signal parameters via rotational invariance techniques for angle estimation in monostatic multiple-input-multiple-output radar with rectangular aarrays[J]. IET Radar, Sonar Navigation, 2014, 8(6): 575-584.
    [14]
    Zheng G M and Chen B X. Unitary dual-resolution ESPRIT for joint DOD and DOA estimation in bistatic MIMO radar[J]. Multidmensional Systems and Signal Processing, 2015, 26(1): 159-178.
    [15]
    Zheng G M, Chen B X, and Yang M L. Unitary ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters, 2012, 48(3): 179-181.
    [16]
    Ren S, Ma X, Yan S, et al.. 2-D unitary ESPRIT-like Direction-Of-Arrival (DOA) estimation for coherent signals with a uniform rectangular array[J]. Sensors, 2013, 13(4): 4272-4288.
    [17]
    Chen D F, Chen B X, and Guo D Q. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770-771.
    [18]
    Chen J L, Gu H, and Su W M. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422-1423.
    [19]
    Lemma A N, Veen A J, and Deprettere E F. Multiresolution ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1722-1726.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [3]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [4]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [5]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [6]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [7]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [8]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [9]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [10]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [13]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [19]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 71.8 %META: 71.8 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Netherlands: 0.0 %Netherlands: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %XX: 0.1 %XX: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 15.1 %北京: 15.1 %北京市: 0.0 %北京市: 0.0 %北海: 0.1 %北海: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南通: 0.0 %南通: 0.0 %印度: 0.5 %印度: 0.5 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宿迁: 0.2 %宿迁: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广元: 0.1 %广元: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.4 %张家口: 2.4 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.0 %徐州: 0.0 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %荷兰北布拉班特省: 0.1 %荷兰北布拉班特省: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 35.8 %西宁: 35.8 %西安: 1.0 %西安: 1.0 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %车士活: 0.0 %车士活: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他CanadaChinaIndiaNetherlandsTaiwan, ChinaXX[]上海上海市东莞东营丹东伊利诺伊州佛山保定兰辛凤凰城包头北京北京市北海南京南宁南通印度古吉拉特台州合肥呼和浩特咸宁哈尔滨哥伦布大庆大连天津宁波安康宿迁常州常德广元广州库比蒂诺开封张家口张家口市徐州德黑兰成都扬州新乡无锡日照昆明杭州梅州武汉永州沈阳河池泰安济南淮南淮安深圳温州渭南湖州湘潭漯河潍坊烟台玉林盐城石家庄石家庄市纽约芒廷维尤芝加哥苏州荷兰北布拉班特省莫斯科葫芦岛衡阳襄阳西宁西安西雅图贵港贵阳车士活运城连云港郑州重庆铁岭长春长沙长治阳泉青岛鞍山韶关香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2736) PDF downloads(1390) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint