Volume 5 Issue 3
Jun.  2016
Turn off MathJax
Article Contents
Liang Hao, Cui Chen, Yu Jian. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array[J]. Journal of Radars, 2016, 5(3): 254-264. doi: 10.12000/JR16016
Citation: Liang Hao, Cui Chen, Yu Jian. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array[J]. Journal of Radars, 2016, 5(3): 254-264. doi: 10.12000/JR16016

Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

DOI: 10.12000/JR16016
Funds:

The National Natural Science Foundation of China (60702015), Anhui Province Foundation for Science and Technology Research Project (1310115188), Scientific Research Foundation of Electronic Engineering Institute (KY13A197, KY13A200, KY13A206)

  • Received Date: 2016-01-21
  • Rev Recd Date: 2016-03-29
  • Publish Date: 2016-06-28
  • In this study, we investigate the estimation of the Two-Dimensional (2D) Direction Of Arrival (DOA) in monostatic multiple-input-multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

     

  • loading
  • [1]
    Huleihel W, Tabrikian J, and Shavit R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075-5089.
    [2]
    Wang P, Li H B, and Himed B. A parametric moving target detector for distributed MIMO radar in non-homogeneous environment[J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2282-2294.
    [3]
    Zhang X, Huang Y, Chen C, et al.. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar[J]. IET Radar, Sonar Navigation, 2012, 6(8): 796-801.
    [4]
    Zhang X and Xu D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Eletronics Letters, 2011, 47(4): 283-284.
    [5]
    文才, 王彤. 单基地MIMO雷达降维酉ESPRIT算法[J]. 系统工程与电子技术, 2014, 36(6): 1062-1067. Wen C and Wang T. Reduced-dimensional unitary ESPRIT algorithm for monostatic MIMO radar[J]. Systems Engineering and Electronics, 2014, 36(6): 1062-1067.
    [6]
    Wang W, Wang X, Song H, et al.. Conjugate ESPRIT for DOA estimation in monostatic MIMO radar[J]. Signal Processing, 2013, 93(7): 2070-2075.
    [7]
    Chen H W, Li X, Jiang W D, et al.. MIMO radar sensitivity analysis of antenna position for direction finding[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5201-5216.
    [8]
    Chen H W, Zhou W, Yang J, et al.. Manifold sensitivity analysis for MIMO radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 999-1003.
    [9]
    Chen H W, Yang J, Zhou W, et al.. Manifold studies on fundamental limits of direction finding multiple-input multiple-output radar systems[J]. IET Radar, Sonar Navigation, 2012, 6(8): 708-718.
    [10]
    Li J F, Zhang X F, Chen W Y, et al.. Reduced-dimensional ESPRIT for direction finding in monostatic MIMO radar with double parallel uniform linear arrays[J]. Wireless Personal Communications, 2014, 77(1): 1-19.
    [11]
    王伟, 王晓萌, 李欣, 等. 基于MUSIC算法的L型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2014, 36(8): 1954-1959. Wang Wei, Wang Xiao-meng, Li Xin, et al.. Reduced-dimensional DOA estimation based on MUSIC algorithm in MIMO radar with L-shaped array[J]. Journal of Electronics Information Technology, 2014, 36(8): 1954-1959.
    [12]
    梁浩, 崔琛, 代林, 等. 基于ESPRIT算法的L型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2015, 37(8): 1928-1935. Liang Hao, Cui Chen, Dai Lin, et al.. Reduced-dimensional DOA estimation based on ESPRIT algorithm in MIMO radar with L-shaped array[J]. Journal of Electronics Information Technology, 2015, 37(8): 1928-1935.
    [13]
    Li J F and Zhang X F. Unitary reduced-dimensional estimation of signal parameters via rotational invariance techniques for angle estimation in monostatic multiple-input-multiple-output radar with rectangular aarrays[J]. IET Radar, Sonar Navigation, 2014, 8(6): 575-584.
    [14]
    Zheng G M and Chen B X. Unitary dual-resolution ESPRIT for joint DOD and DOA estimation in bistatic MIMO radar[J]. Multidmensional Systems and Signal Processing, 2015, 26(1): 159-178.
    [15]
    Zheng G M, Chen B X, and Yang M L. Unitary ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters, 2012, 48(3): 179-181.
    [16]
    Ren S, Ma X, Yan S, et al.. 2-D unitary ESPRIT-like Direction-Of-Arrival (DOA) estimation for coherent signals with a uniform rectangular array[J]. Sensors, 2013, 13(4): 4272-4288.
    [17]
    Chen D F, Chen B X, and Guo D Q. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770-771.
    [18]
    Chen J L, Gu H, and Su W M. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422-1423.
    [19]
    Lemma A N, Veen A J, and Deprettere E F. Multiresolution ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1722-1726.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2653) PDF downloads(1380) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint