Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
Citation: XIAO Jiong, TANG Bo, and WANG Hai. Sparse reconstruction-based direction of arrival estimation for MIMO radar in the presence of unknown mutual coupling[J]. Journal of Radars, 2024, 13(5): 1123–1133. doi: 10.12000/JR24061

Sparse Reconstruction-based Direction of Arrival Estimation for MIMO Radar in the Presence of Unknown Mutual Coupling

DOI: 10.12000/JR24061 CSTR: 32380.14.JR24061
Funds:  The National Natural Science Foundation of China (62171450), The Anhui Provincial Natural Science Foundation (2108085J30), Research Plan of National University of Defense Technology (23-ZZCX-JDZ-42)
More Information
  • Corresponding author: TANG Bo, tangbo06@gmail.com
  • Received Date: 2024-04-03
  • Rev Recd Date: 2024-06-23
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-12
  • To improve the accuracy of Direction Of Arrival (DOA) estimation in Multiple Input Multiple Output (MIMO) radar systems under unknown mutual coupling, we propose a mutual coupling calibration and DOA estimation algorithm based on Sparse Learning via Iterative Minimization (SLIM). The proposed algorithm utilizes the spatial sparsity of target signals and estimates the spatial pseudo-spectra and the mutual coupling matrices of MIMO arrays through cyclic optimization. Moreover, it is hyperparameter-free and guarantees convergence. Numerical examples demonstrate that for MIMO radar systems under unknown mutual coupling conditions, the proposed algorithm can accurately estimate the DOA of targets with small angle separations and relatively high Signal-to-Noise Ratios (SNRs), even with a limited number of samples. In addition, low DOA estimation errors are achieved for targets with large angle separations and small sample sizes, even under low-SNR conditions.

     

  • [1]
    LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken: John Wiley & Sons, 2009. doi: 10.1002/9780470391488.
    [2]
    HAIMOVICH A, BLUM R, and CIMINI L. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448.
    [3]
    LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812.
    [4]
    何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128.

    HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128.
    [5]
    张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062.

    ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062.
    [6]
    LI Da, TANG Bo, and XUE Lei. Multi-spectrally constrained low-PAPR waveform optimization for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5097–5110. doi: 10.1109/TAES.2023.3247976.
    [7]
    TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315.
    [8]
    吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105.

    WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105.
    [9]
    杨婧, 余显祥, 沙明辉, 等. MIMO系统探通一体化信号矩阵设计方法[J]. 雷达学报, 2023, 12(2): 262–274. doi: 10.12000/JR22087.

    YANG Jing, YU Xianxiang, SHA Minghui, et al. Dual function radar and communication signal matrix design method for MIMO system[J]. Journal of Radars, 2023, 12(2): 262–274. doi: 10.12000/JR22087.
    [10]
    LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—part I: Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3997–4012. doi: 10.1109/TSP.2016.2558159.
    [11]
    ZHENG Zhengzhi, WANG Wenqin, KONG Yangyang, et al. MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect[J]. IEEE Transactions on Signal Processing, 2019, 67(7): 1728–1741. doi: 10.1109/TSP.2019.2897954.
    [12]
    YAN Hangqi, WANG Yuexian, WANG Ling, et al. Design of nonredundant sparse planar arrays with reduced mutual coupling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1272–1283. doi: 10.1109/TAES.2023.3337216.
    [13]
    AMANI N, JANSEN F, FILIPPI A, et al. Sparse automotive MIMO radar for super-resolution single snapshot DOA estimation with mutual coupling[J]. IEEE Access, 2021, 9: 146822–146829. doi: 10.1109/ACCESS.2021.3122967.
    [14]
    LIU Xiaoli and LIAO Guisheng. Direction finding and mutual coupling estimation for bistatic MIMO radar[J]. Signal Processing, 2012, 92(2): 517–522. doi: 10.1016/j.sigpro.2011.08.017.
    [15]
    ZHENG Zhidong, ZHANG Jin, and ZHANG Jianyun. Joint DOD and DOA estimation of bistatic MIMO radar in the presence of unknown mutual coupling[J]. Signal Processing, 2012, 92(12): 3039–3048. doi: 10.1016/j.sigpro.2012.06.013.
    [16]
    XU Yang and ZHENG Zhi. Joint DOD and DOA estimation for bistatic MIMO radar in the presence of unknown mutual coupling[J]. Circuits, Systems, and Signal Processing, 2023, 42(4): 2468–2479. doi: 10.1007/s00034-022-02201-5.
    [17]
    TIAN Ye, WANG Ran, CHEN Hua, et al. Real-valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling[J]. IEEE Communications Letters, 2022, 26(4): 912–916. doi: 10.1109/LCOMM.2022.3148260.
    [18]
    杨康, 文方青, 黄冬梅, 等. 基于实值三线性分解的互耦条件下双基地MIMO雷达角度估计算法[J]. 系统工程与电子技术, 2018, 40(2): 314–321. doi: 10.3969/j.issn.1001-506X.2018.02.12.

    YANG Kang, WEN Fangqing, HUANG Dongmei, et al. Real-value-based trilinear decomposition based direction estimation algorithm for bistatic MIMO radar in the presence of mutual coupling[J]. Systems Engineering and Electronics, 2018, 40(2): 314–321. doi: 10.3969/j.issn.1001-506X.2018.02.12.
    [19]
    WANG Xianpeng, MENG Dandan, HUANG Mengxing, et al. Reweighted regularized sparse recovery for DOA estimation with unknown mutual coupling[J]. IEEE Communications Letters, 2019, 23(2): 290–293. doi: 10.1109/LCOMM.2018.2884457.
    [20]
    ROCCA P, HANNAN M A, SALUCCI M, et al. Single-snapshot DOA estimation in array antennas with mutual coupling through a multiscaling BCS strategy[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3203–3213. doi: 10.1109/TAP.2017.2684137.
    [21]
    HAWES M, MIHAYLOVA L, SEPTIER F, et al. Bayesian compressive sensing approaches for direction of arrival estimation with mutual coupling effects[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1357–1368. doi: 10.1109/TAP.2017.2655013.
    [22]
    CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663.
    [23]
    FRIEDLANDER B and WEISS A J. Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(3): 273–284. doi: 10.1109/8.76322.
    [24]
    ZHOU Jianxiong, ZHU Rongqiang, and LI Haorun. Mutual coupling compensation for compact MIMO radar[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 6018–6023. doi: 10.1109/TAP.2022.3161333.
    [25]
    ZHU Jingjing, ZHU Shengqi, XU Jingwei, et al. Adaptive detectors for FDA-MIMO radar with unknown mutual coupling[J]. IEEE Signal Processing Letters, 2023, 30: 1437–1441. doi: 10.1109/LSP.2023.3321555.
    [26]
    LIU Long, ZHANG Hu, LAN Lan, et al. Joint range and angle estimation by FDA-MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3669–3683. doi: 10.1109/TAES.2022.3230383.
    [27]
    XU Luzhou, ZHAO Kexin, LI Jian, et al. Wideband source localization using sparse learning via iterative minimization[J]. Signal Processing, 2013, 93(12): 3504–3514. doi: 10.1016/j.sigpro.2013.04.005.
    [28]
    ZHANG Kun and SHUI Penglang. Estimation of complex high-resolution range profiles of ships by sparse recovery iterative minimization method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3042–3056. doi: 10.1109/TAES.2021.3068431.
    [29]
    WU Chaoyi, REN Jiaying, TAN F W, et al. Computationally efficient implementation of SLIM for parameter estimation in few-bit PMCW MIMO radar systems[J]. IEEE Transactions on Radar Systems, 2023, 1: 339–352. doi: 10.1109/TRS.2023.3284297.
    [30]
    张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013.

    ZHANG Xianda. Matrix Analysis and Applications [M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
    [31]
    WU Jinlong, WEN Fangqing, and SHI Junpeng. Direction finding in bistatic MIMO radar with direction-dependent mutual coupling[J]. IEEE Communications Letters, 2021, 25(7): 2231–2234. doi: 10.1109/LCOMM.2021.3072310.
    [32]
    LI Jian and STOICA P. Efficient mixed-spectrum estimation with applications to target feature extraction[J]. IEEE Transactions on Signal Processing, 1996, 44(2): 281–295. doi: 10.1109/78.485924.
    [33]
    WU Chaoyi, ZHANG Tianyi, LI Jian, et al. Parameter estimation in PMCW MIMO radar systems with few-bit quantized observations[J]. IEEE Transactions on Signal Processing, 2022, 70: 810–821. doi: 10.1109/TSP.2022.3146790.
  • Relative Articles

    [1]LI Meilin, HAN Chong. Terahertz Communication and Sensing Framework Based on Orthogonal Delay-Doppler Division Multiplexing Modulation[J]. Journal of Radars. doi: 10.12000/JR24238
    [2]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [3]LIU Fan, LU Shihang, CHEN Zihao. MIMO-ISAC Precoding Design Toward Random Signals[J]. Journal of Radars. doi: 10.12000/JR25019
    [4]TANG Aimin, WANG Shuhan, QU Wenze. Reference Signal Design in OFDM ISAC for Long-range and High-speed UAV Detection[J]. Journal of Radars. doi: 10.12000/JR24240
    [5]HE Yaping, SHI Longfei, WANG Dong, TANG Jianglan, CHEN Junxian, MA Jiazhi, LIU Jialei. Research Progress on Dual Function Radar and Communication Signal Design and its Application in Typical Detection Scenarios[J]. Journal of Radars. doi: 10.12000/JR24213
    [6]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [7]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [8]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [9]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [10]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [11]WANG Jiahuan, FAN Pingzhi, SHI Qiao, ZHOU Zhengchun. Doppler Resilient Integrated Sensing and Communication Waveforms Design[J]. Journal of Radars, 2023, 12(2): 275-286. doi: 10.12000/JR22155
    [12]YU Xianxiang, YAO Xue, YANG Jing, LU Jun, CUI Guolong, KONG Lingjiang. Radar-centric DFRC Signal Design: Overview and Future Research Avenues[J]. Journal of Radars, 2023, 12(2): 247-261. doi: 10.12000/JR23015
    [13]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [14]MA Dingyou, LIU Xiang, HUANG Tianyao, LIU Yimin. Joint Radar and Communications: Shared Waveform Designs and Performance Bounds[J]. Journal of Radars, 2022, 11(2): 198-212. doi: 10.12000/JR21146
    [15]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [16]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [17]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [18]ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, LI Yanlei, WU Yirong. A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466. doi: 10.12000/JR21028
    [19]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [20]Li Lei, Li Guo-lin, Liu Run-jie. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction[J]. Journal of Radars, 2015, 4(2): 178-184. doi: 10.12000/JR14116
  • Cited by

    Periodical cited type(30)

    1. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 .
    2. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 .
    3. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 .
    4. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 .
    5. 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . 本站查看
    6. 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 .
    7. 赵迪,行鸿彦,王海峰,阎妍. 基于SAE-GA-XGBoost算法的海面小目标检测. 雷达科学与技术. 2023(01): 88-96 .
    8. 关键,姜星宇,刘宁波,黄勇,丁昊. 海杂波中目标分数域谱范数特征检测方法. 电子与信息学报. 2023(06): 2162-2170 .
    9. 刘照标,张友益,陈翰. 舰载近程搜索雷达时空二维海杂波建模与仿真. 舰船电子对抗. 2023(03): 70-74 .
    10. 丁昊,朱晨光,刘宁波,王国庆. 高海况条件下海面漂浮小目标特征提取与分析. 海军航空大学学报. 2023(04): 301-312 .
    11. 李宏武,王燊燊,徐秦,祁华峰. 海杂波对机载雷达探测影响研究. 现代电子技术. 2023(20): 101-106 .
    12. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 .
    13. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 .
    14. 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 .
    15. 刘宁波,丁昊,黄勇,董云龙,王国庆,董凯. X波段雷达对海探测试验与数据获取年度进展. 雷达学报. 2021(01): 173-182 . 本站查看
    16. 丁斌,夏雪,梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法. 电子与信息学报. 2021(07): 1985-1991 .
    17. 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 .
    18. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 .
    19. 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 .
    20. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 .
    21. 时艳玲,姚婷婷,郭亚星. 基于图连通密度的海面漂浮小目标检测. 电子与信息学报. 2021(11): 3185-3192 .
    22. 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 .
    23. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
    24. 关键. 雷达海上目标特性综述. 雷达学报. 2020(04): 674-683 . 本站查看
    25. 唐先慧,李东,粟嘉,程婉儒,任金芝,李秀琴. 基于AlexNet的自适应杂波智能抑制方法. 信号处理. 2020(12): 2032-2042 .
    26. 王超,孙芹东,张林,王文龙,张小川. 水下声学滑翔机海上目标探测试验与性能评估. 信号处理. 2020(12): 2043-2051 .
    27. 曹成会,张杰,张晰,孟俊敏,毛兴鹏. 低掠射微波雷达的海杂波多方位幅度特性分析. 信号处理. 2020(12): 2085-2098 .
    28. 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . 本站查看
    29. 于涵,水鹏朗,施赛楠,杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法. 电子与信息学报. 2019(12): 2836-2843 .
    30. 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 .

    Other cited types(23)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 61.4 %META: 61.4 %PDF: 10.5 %PDF: 10.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.1 %其他: 7.1 %其他: 1.3 %其他: 1.3 %China: 0.1 %China: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Research: 0.1 %Research: 0.1 %San Jose: 0.1 %San Jose: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Thane: 0.1 %Thane: 0.1 %[]: 0.6 %[]: 0.6 %三明: 0.0 %三明: 0.0 %上海: 1.7 %上海: 1.7 %东京都: 0.0 %东京都: 0.0 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %丹东: 0.0 %丹东: 0.0 %乌兰察布: 0.0 %乌兰察布: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伊春: 0.0 %伊春: 0.0 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.0 %佛山: 0.0 %六安: 0.0 %六安: 0.0 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 8.8 %北京: 8.8 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 3.5 %南京: 3.5 %南充: 0.1 %南充: 0.1 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.3 %南通: 0.3 %南阳: 0.0 %南阳: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.4 %厦门: 0.4 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %台湾: 0.2 %台湾: 0.2 %合肥: 1.0 %合肥: 1.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.2 %商洛: 0.2 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.0 %大同: 0.0 %大连: 0.2 %大连: 0.2 %天津: 0.9 %天津: 0.9 %太原: 0.0 %太原: 0.0 %奥尔巴尼: 0.0 %奥尔巴尼: 0.0 %威海: 0.4 %威海: 0.4 %宁波: 0.0 %宁波: 0.0 %安康: 0.3 %安康: 0.3 %安阳: 0.0 %安阳: 0.0 %宣城: 0.6 %宣城: 0.6 %宿州: 0.0 %宿州: 0.0 %宿迁: 0.0 %宿迁: 0.0 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴伐利亚州: 0.1 %巴伐利亚州: 0.1 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %布加勒斯特: 0.1 %布加勒斯特: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.9 %广州: 1.9 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.4 %开封: 0.4 %张家口: 1.6 %张家口: 1.6 %徐州: 0.0 %徐州: 0.0 %德州: 0.0 %德州: 0.0 %德罕: 0.0 %德罕: 0.0 %成都: 3.8 %成都: 3.8 %扬州: 0.2 %扬州: 0.2 %抚州: 0.0 %抚州: 0.0 %揭阳: 0.0 %揭阳: 0.0 %文昌: 0.1 %文昌: 0.1 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新德里: 0.0 %新德里: 0.0 %新竹: 0.1 %新竹: 0.1 %无锡: 0.4 %无锡: 0.4 %昆明: 1.2 %昆明: 1.2 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.1 %朝阳: 0.1 %来宾: 0.0 %来宾: 0.0 %杭州: 0.5 %杭州: 0.5 %松原: 0.1 %松原: 0.1 %林芝: 0.0 %林芝: 0.0 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.2 %桂林: 0.2 %楚雄: 0.0 %楚雄: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 1.4 %武汉: 1.4 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.2 %沧州: 0.2 %泉州: 0.1 %泉州: 0.1 %法兰克福: 0.1 %法兰克福: 0.1 %泰州: 0.0 %泰州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.5 %济南: 0.5 %济宁: 0.0 %济宁: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.3 %淮北: 0.3 %淮南: 0.0 %淮南: 0.0 %深圳: 2.4 %深圳: 2.4 %温州: 0.2 %温州: 0.2 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %湛江: 0.0 %湛江: 0.0 %漯河: 0.9 %漯河: 0.9 %潍坊: 0.0 %潍坊: 0.0 %澳门: 0.1 %澳门: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.2 %烟台: 0.2 %珠海: 0.0 %珠海: 0.0 %甘南: 0.1 %甘南: 0.1 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %科隆: 0.1 %科隆: 0.1 %秦皇岛: 0.5 %秦皇岛: 0.5 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.2 %绵阳: 0.2 %聊城: 0.1 %聊城: 0.1 %自贡: 0.1 %自贡: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.3 %苏州: 0.3 %荆州: 0.0 %荆州: 0.0 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %西孟加拉: 0.1 %西孟加拉: 0.1 %西宁: 19.1 %西宁: 19.1 %西安: 3.3 %西安: 3.3 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %谢利夫: 0.1 %谢利夫: 0.1 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.5 %郑州: 1.5 %鄂尔多斯: 0.0 %鄂尔多斯: 0.0 %酒泉: 0.0 %酒泉: 0.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.1 %金华: 0.1 %银川: 0.0 %银川: 0.0 %镇江: 0.1 %镇江: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阿什本: 0.0 %阿什本: 0.0 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %随州: 0.1 %随州: 0.1 %青岛: 0.6 %青岛: 0.6 %首尔: 0.1 %首尔: 0.1 %香港: 0.1 %香港: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.0 %黄冈: 0.0 %黄山: 0.1 %黄山: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaMatawanResearchSan JoseSeattleThane[]三明上海东京都东莞中卫丹东乌兰察布乌鲁木齐伊利诺伊州伊春伦敦佛山六安内江加利福尼亚州北京北海十堰南京南充南宁南昌南通南阳卡拉奇厦门台北台州台湾合肥呼和浩特咸阳哈尔滨哥伦布商洛喀什嘉兴大同大连天津太原奥尔巴尼威海宁波安康安阳宣城宿州宿迁崇左巴中巴伐利亚州巴音郭楞布加勒斯特常州常德平顶山广州库比蒂诺开封张家口徐州德州德罕成都扬州抚州揭阳文昌斯德哥尔摩新德里新竹无锡昆明晋中晋城朝阳来宾杭州松原林芝枣庄柳州格兰特县桂林楚雄榆林武汉汕头沈阳沧州泉州法兰克福泰州洛杉矶洛阳济南济宁淄博淮北淮南深圳温州渭南湖州湛江漯河潍坊澳门濮阳烟台珠海甘南石嘴山石家庄福州科隆秦皇岛纽约绍兴绵阳聊城自贡舟山芒廷维尤芜湖芝加哥苏州荆州葫芦岛衡水衡阳衢州西孟加拉西宁西安西雅图诺沃克谢利夫贵阳赣州达州运城连云港邯郸邵阳郑州鄂尔多斯酒泉重庆金华银川镇江长春长沙长治阜阳阿什本阿姆斯特丹随州青岛首尔香港马鞍山黄冈黄山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(795) PDF downloads(294) Cited by(53)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint