XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: Luo Ying, Gong Yishuai, Chen Yijun, Zhang Qun. Multi-target Micro-motion Feature Extraction Based on Tracking Pulses in MIMO Radar[J]. Journal of Radars, 2018, 7(5): 575-584. doi: 10.12000/JR18035

Multi-target Micro-motion Feature Extraction Based on Tracking Pulses in MIMO Radar

DOI: 10.12000/JR18035
Funds:  The National Natural Science Foundation of China (61571457, 61631019)
  • Received Date: 2018-04-25
  • Rev Recd Date: 2018-06-02
  • Publish Date: 2018-10-28
  • The micro-motion feature is one of the important characteristic information of spatial target recognition. However, the existing multifunctional Multi-Input Multi-Output (MIMO) radar usually has to allocate a large number of continuous time resources for target micro-motion feature extraction after target searching and tracking, which leads to a low real-time performance of target recognition and poor overall performance of radar system. To solve this problem, this paper presents a multi-target micro-motion feature extraction method for MIMO radar based on tracking pulses. First, according to the azimuth information of each target, the MIMO radar transmitting waveform is designed, and the tracking pulses are transmitted simultaneously for targets with different directions. On this basis, by considering the micro-motion feature extraction performance and the target tracking performance synthetically, the transmission time series of the tracking pulses are optimized. Finally, the narrowband tracking pulses are directly used to simultaneously extract the micro-motion features of the targets in different directions, which makes it no longer necessary to allocate additional radar resources for target feature extraction. Consequently, the real-time recognition performance and the working efficiency of radar are improved significantly. Simulations demonstrate that when the signal-to-noise ratio is larger than –10 dB, the micro-motion features of multi-targets can be extracted accurately, which verifies the effectiveness and robustness of the proposed method.

     

  • [1]
    Zhang Q, Luo Y, and Chen Y A. Micro-Doppler Characteristics of Radar Targets[M]. Jonathan Simpson, United Kingdom: Elsevier Science, 2016: 4–6.
    [2]
    杨琪, 邓彬, 王宏强, 等. 太赫兹雷达目标微动特征提取研究进展[J]. 雷达学报, 2018, 7(1): 22–45. DOI: 10.12000/JR17087

    Yang Qi, Deng Bin, Wang Hong-qiang, et al. Advancements in research on micro-motion feature extraction in the terahertz region[J]. Journal of Radars, 2018, 7(1): 22–45. DOI: 10.12000/JR17087
    [3]
    陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4(6): 630–638. DOI: 10.12000/JR15079

    Chen Xiao-long, Dong Yun-long, Li Xiu-you, et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4(6): 630–638. DOI: 10.12000/JR15079
    [4]
    冯存前, 李靖卿, 贺思三, 等. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6): 609–620. DOI: 10.12000/JR15084

    Feng Cun-qian, Li Jing-qing, He Si-san, et al. Micro-Doppler feature extraction and recognition based on netted radar for ballistic targets[J]. Journal of Radars, 2015, 4(6): 609–620. DOI: 10.12000/JR15084
    [5]
    Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21.
    [6]
    Bai X R, Zhou F, and Bao Z. High-resolution three-dimensional imaging of space targets in micromotion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3428–3440. DOI: 10.1109/JSTARS.2015.2431119
    [7]
    Li G and Varshney P K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4937–4948. DOI: 10.1109/JSTARS.2014.2318596
    [8]
    Du L, Ma Y Y, Wang B S, et al. Noise-robust classification of ground moving targets based on time-frequency feature from micro-Doppler signature[J]. IEEE Sensors Journal, 2014, 14(8): 2672–2682. DOI: 10.1109/JSEN.2014.2314219
    [9]
    牛杰, 刘永祥, 秦玉亮, 等. 一种基于经验模态分解的锥体目标雷达微动特征提取新方法[J]. 电子学报, 2011, 39(7): 1712–1715

    Niu Jie, Liu Yong-xiang, Qin Yu-liang, et al. A new method of radar micro-motion feature extraction of cone target based on empirical mode decomposition[J]. Acta Electronica Sinica, 2011, 39(7): 1712–1715
    [10]
    何其芳, 张群, 罗迎, 等. 正弦调频Fourier-Bessel变换及其在微动目标特征提取中的应用[J]. 雷达学报, 待出版. DOI: 10.12000/JR17069

    He Qi-fang, Zhang Qun, Luo Ying, et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-Doppler feature extraction[J]. Journal of Radars, in press. DOI: 10.12000/JR17069
    [11]
    Li J and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. DOI: 10.1109/MSP.2007.904812
    [12]
    Ma C Z, Yeo T S, Liu Z F, et al. Target imaging based on l1l0 norms homotopy sparse signal recovery and distributed MIMO antennas[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3399–3414. DOI: 10.1109/TAES.2015.140939
    [13]
    Li J, Stoica P, and Zheng X Y. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3959–3968. DOI: 10.1109/TSP.2008.923197
    [14]
    李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151–1158. DOI: 10.11999/JEIT170426

    Li Hui, Zhao Yong-bo, and Cheng Zeng-fei. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics&Information Technology, 2018, 40(5): 1151–1158. DOI: 10.11999/JEIT170426
    [15]
    李玉翔, 任修坤, 孙扬, 等. 一种循环迭代的宽带MIMO雷达正交稀疏频谱波形设计方法[J]. 电子与信息学报, 2017, 39(4): 953–959. DOI: 10.11999/JEIT160597

    Li Yu-xiang, Ren Xiu-kun, Sun Yang, et al. Cyclic iterative method for wideband MIMO radar orthogonal sparse frequency waveform design[J]. Journal of Electronics&Information Technology, 2017, 39(4): 953–959. DOI: 10.11999/JEIT160597
    [16]
    Mallat S G and Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. DOI: 10.1109/78.258082
    [17]
    Chen Y J, Zhang Q, Ma C Z, et al. Micromotion feature extraction of radar target using tracking pulses with adaptive pulse repetition frequency adjustment[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083569. DOI: 10.1117/1.JRS.8.083569
    [18]
    叶淋美. 基于压缩感知的雷达信号处理应用研究[D]. [硕士论文], 厦门大学, 2014: 17–34.

    Ye Lin-mei. Study on application of compressive sensing in radar signal processing[D]. [Master dissertation], Xiamen University, 2014: 17–34.
  • Relative Articles

    [1]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [2]LAN Xiaoyu, HU Jiyan, LIANG Mingshen, MA Shuang. Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming[J]. Journal of Radars, 2025, 14(2): 280-292. doi: 10.12000/JR24175
    [3]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [4]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [5]ZHAO Kaifa, SONG Hu, LIU Rong, WANG Xinhai. Distributed Radar Main-lobe Interference Suppression Method Via Joint Optimization of Array Configuration and Subarray Element Number[J]. Journal of Radars, 2024, 13(6): 1355-1369. doi: 10.12000/JR24192
    [6]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [7]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [8]WANG Rongqing, XIE Jingyang, TIAN Biao, XU Shiyou, CHEN Zengping. Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2024, 13(6): 1337-1354. doi: 10.12000/JR24153
    [9]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [10]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [11]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [12]GAI Jiyu, JIANG Wei, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. A Method for Interrupted-Sampling Repeater Jamming Identification and Suppression Based on Differential Features[J]. Journal of Radars, 2023, 12(1): 186-196. doi: 10.12000/JR22058
    [13]XIA Deping, ZHANG Liang, WU Tao, MENG Xiangdong. A Multiple Interference Suppression Algorithm Based on Airborne Bistatic Polarization Radar[J]. Journal of Radars, 2022, 11(3): 399-407. doi: 10.12000/JR21212
    [14]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [15]LIU Pingyu, LYU Xiaode, LIU Zhongsheng, ZHANG Hanliang. Research on Co-channel Interference Suppression Method for Passive Radar Based on the Jiont Processing of Primary and Reference Channels[J]. Journal of Radars, 2020, 9(6): 974-986. doi: 10.12000/JR19047
    [16]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [17]MENG Zhichao, LU Jingyue, ZHANG Lei. Forward-looking Multi-channel SAR Adaptive Identification to Suppress Deception Jamming[J]. Journal of Radars, 2019, 8(1): 82-89. doi: 10.12000/JR18081
    [18]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [19]Li Yongzhen, Hu Wanqiu, Sun Dou, Li Zhongwei. Scheme for Polarization Detection and Suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666-672. doi: 10.12000/JR16115
    [20]Zhang Chi, Li Yue-li, Zhou Zhi-min. Wall Clutter Mitigation in Through-the-Wall Imaging Radar with Sparse Array Antenna Based on Independent Component Analysis[J]. Journal of Radars, 2014, 3(5): 524-532. doi: 10.3724/SP.J.1300.2014.14066
  • Cited by

    Periodical cited type(5)

    1. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    2. 陈士超,魏靖彪,范俊,魏玺章,王泽朝,孙谦,刘明. 基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别. 兵工学报. 2024(S1): 43-50 .
    3. 赵娟娟. 基于统计模型的电子信息产业企业成长性分析. 中国电子商情. 2024(04): 64-66 .
    4. 苏海龙,水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计. 西安电子科技大学学报. 2023(06): 105-119 .
    5. 赵春雷,姚嘉嵘,李京效,戚张行,魏汇赞. 地基雷达空中目标识别方法研究综述. 空天预警研究学报. 2023(05): 313-320+334 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 75.5 %META: 75.5 %PDF: 11.1 %PDF: 11.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.3 %其他: 0.3 %Absecon: 0.3 %Absecon: 0.3 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %上海市: 0.0 %上海市: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.4 %中卫: 0.4 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.0 %包头: 0.0 %北京: 20.3 %北京: 20.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南京市: 0.0 %南京市: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %吕梁: 0.0 %吕梁: 0.0 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.0 %和田: 0.0 %唐山: 0.2 %唐山: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.5 %太原: 0.5 %威海: 0.3 %威海: 0.3 %娄底: 0.0 %娄底: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.3 %宿迁: 0.3 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.0 %常州: 0.0 %常德市: 0.0 %常德市: 0.0 %平顶山: 0.0 %平顶山: 0.0 %平顶山市叶县: 0.0 %平顶山市叶县: 0.0 %广州: 0.5 %广州: 0.5 %广州市天河区: 0.1 %广州市天河区: 0.1 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.6 %张家口: 0.6 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.9 %成都: 0.9 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %曼谷: 0.0 %曼谷: 0.0 %杭州: 1.7 %杭州: 1.7 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海西: 0.0 %海西: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %白银: 0.1 %白银: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.0 %苏州: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 27.3 %西宁: 27.3 %西安: 0.5 %西安: 0.5 %贵港: 0.1 %贵港: 0.1 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 0.0 %重庆: 0.0 %金华: 0.1 %金华: 0.1 %长沙: 0.5 %长沙: 0.5 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.8 %青岛: 0.8 %黔南: 0.0 %黔南: 0.0 %齐齐哈尔: 0.4 %齐齐哈尔: 0.4 %其他其他AbseconChinaIndiaMatawanRochesterUnited States[]上海上海市东莞中卫丽水乌鲁木齐佛山信阳兰辛包头北京北京市北海南京南京市南宁南昌台北台州合肥吕梁吴忠呼和浩特和田唐山夏尔迦大连天津太原威海娄底安康宣城宿迁岳阳崇左巴中巴彦淖尔常州常德市平顶山平顶山市叶县广州广州市天河区廊坊张家口张家口市惠州成都成都市新都区扬州新乡无锡昆明曼谷杭州株洲格兰特县桂林榆林武汉沈阳洛阳济南海西淮南淮安深圳温州渭南湖州湘潭漯河潍坊玉林珠海白银石家庄福州秦皇岛红河纽约绵阳芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵港赤峰运城郑州重庆金华长沙阜阳阳泉青岛黔南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4077) PDF downloads(464) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint