Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
Citation: Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013

Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar

DOI: 10.12000/JR16013
Funds:

The National 863 Program of China, The National Ministries Foundation

  • Received Date: 2016-01-20
  • Rev Recd Date: 2016-03-14
  • Publish Date: 2016-04-28
  • Polarization hierarchy and system operating architecture is one of the key technologies for Polarimetric Synthetic Aperture Radar (PolSAR) system design. In this paper the polarization hierarchies of PolSAR, including Single-Polarization radar, Dual-Polarization radar, Full-Polarization radar, and Compact Polarization radar, are discussed. In addition, the system operating architectures such as Polarization Timedivision multiplexing pulse, Polarization Frequency-division multiplexing pulse, Polarization Code-division multiplexing pulse and Polarization Space-division in Azimuth are presented more in detail.

     

  • [1]
    Kostinski A B and Boerner W M. On foundation of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395-1403.
    [2]
    Cloude S R and Pottier E. An entropy based classification scheme for land application of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    [3]
    Dong Y, Milne A K, and Forster B C. Segmentation and classification of vegetated areas using polarimetric SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 321-329.
    [4]
    Freeman A. Fitting a two-component scattering model to polarimetric SAR data from forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2583-2592.
    [5]
    Mattia F, Floury N, and Moreira A. Foreword to the special issue on retrieval of bio-and geophysical parameters from SAR data for land applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 379-380. DOI: 10.1109/TGRS.2009.2012837.
    [6]
    Ulaby F T and Elachi Charles. Radar Polarimetry for Geoscience Applications[M]. Artech House Inc, Boston, London, 1990: 281-295.
    [7]
    Oh Y, Sarabandi K, and Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[C]. IEEE Geoscience and Remote Sensing Symposium, Pasadena, 1994, 3: 1582-1584. DOI: 10.1109/IGARSS.1994.399504.
    [8]
    Dierking W and Wesche C. C-band radar polarimetry useful for detection of icebergs in sea ice?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 25-37.
    [9]
    He Yijun, Perrie W, and Xie Tao, et al.. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623-2631.
    [10]
    Zhang B, Perrie W, and Vachon P W, et al.. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4252-4261.
    [11]
    Novak L M, Sechtin M B, and Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150-165.
    [12]
    Monaldo F. SEASAT sees the winds with SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 1: 38-40. DOI: 10.1109/IGARSS.2003.1293671.
    [13]
    Monaldo F M, Jackson C R, and Pichel W G. Seasat to RADARSAT-2: research to operations[J]. Oceanography, 2013, 26(2): 34-45.
    [14]
    Desnos Y L, Buck C, Guijarro J, et al.. The envisat advance synthetic aperture radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, 2000, 3: 1171-1173. DOI: 10.1109/IGARSS.2000.858057.
    [15]
    Hawkins R K, Touzi R, Wolfe J, et al.. ASAR AP mode performance and applications potential[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2: 1115-1117. DOI: 10.1109/IGARSS.2003.1294029.
    [16]
    Freeman A, Alves M, Chapman B, et al.. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 848-857. DOI: 10.1109/36.406671.
    [17]
    Jordan R L, Huneycutt B L, and Werner M. The SIR-C\X-SAR synthentic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829-839. DOI: 10.1109/36.406669
    [18]
    Fox Peter A, Luscombe Anthony P, and Thompson Alan A. Radarsat-2 SAR modes development and utilization[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 258-264.
    [19]
    Fujimra T and Kimura T. Compact polarimetric observation using phased array antenna and its case study for PALSAR[C]. EUSAR, 2008: 1-4.
    [20]
    Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 3: 2140-2142. DOI: 10.1109/IGARSS.2003.1294365.
    [21]
    Stangl M, Werninghaus R, and Zahn R. The TerraSAR-X active phased array antenna[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003: 70-75. DOI: 10.1109/PAST.2003.1256959.
    [22]
    ME Nord, Ainsworth T L, Lee J S, et al.. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174-188.
    [23]
    Spudis P, Nozette S, Bussey B, et al.. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon[J]. Current Science, 2009, 96(4): 533-539.
    [24]
    Raney R K, Spudis P D, Bussey B, et al.. The lunar mini-RF radars: hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2010, 99(5): 808-823.
    [25]
    Misra Tapan, Rana S S, Bora V H, et al.. SAR Payload of Radar Imaging Satellite (RISAT) of ISRO[C]. EUSAR, 2006: 1-4.
    [26]
    Geldsetzer T, Arkett M, and Zagon T. All season assessment of RADARSAT constellation mission compact polarimetry modes for canadian ICE service operational implementation[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, 2014: 1560-1563. DOI: 10.1109/IGARSS.2014.6946737.
    [27]
    Souyris J C and Mingot S. Polarimetry based on one transmitting and two receiving polarizations: the /4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, 2002, 1: 629-631. DOI: 10.1109/IGARSS.2002.1025127.
    [28]
    Souyris J C, Imbo P, Fjortoft R, et al.. Compact polarimetry based onsymmetry properties of geophysical media: the /4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634-646. DOI: 10.1109/TGRS.2004.842486.
    [29]
    Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397-3404. DOI: 10.1109/TGRS.2007.895883.
    [30]
    Raney R K. Hybrid-quad-pol SAR[C]. IEEE Geoscience and Remote Sensing Symposium, 2008, 4: 491-493. DOI: 10.1109/IGARSS.2008.4779765.
    [31]
    戴博伟. 多极化合成孔径雷达系统与极化信息处理研究[D]. [博士论文], 中国科学院电子研究所, 2000. Dai Bowei. The research of polarimetric SAR system and polarimetric information processing[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2000.
    [32]
    Raney R K. Dual-polarized SAR and Stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317-319.
    [33]
    COSMO-SkyMed System Description User Guide[R]. 4 May, 2007.
    [34]
    COSMO-SkyMed System HandBook[R]. 30 April, 2007.
    [35]
    Shirvany R, Chabert M, and Tourneret J Y. Comarision of ship detection on performance based on the degree of polarization in hybrid/compact and linear dual-pol SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011: 3550-3553. DOI: 10.1109/IGARSS.2011.6049988.
    [36]
    Lardeux C, Niamen D, Routier J B, et al.. Use of PALSAR polarimetric data for tropical forest stratification and comparison of simulated dual and compact polarimetric modes[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, 2010: 1855-1858. DOI: 10.1109/IGARSS.2010.5650441.
    [37]
    Singh G, Yamaguchi Y, Park Sang-Eun, et al.. Categorization of the glaciated terrain of indian himalaya using CP and FP mode SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2014, 7(3): 872-880. DOI: 10.1109/JSTARS.2013.2266354.
    [38]
    Yin Junjun, Yang Jian, Zhou Zheng-Shu, et al.. The extended bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2015, 8(8): 3760-3772. DOI: 10.1109/JSTARS.2014.2359141.
  • Relative Articles

    [1]SHI Lei, SUN Weidong, YANG Le, YANG Jie, ZHAO Lingli, LI Pingxiang, LIU Yabo. Evaluation of Radiometric and Polarimetric Errors in the LT-1A Satellite Data Based on Tropical Forests in the Amazon[J]. Journal of Radars, 2025, 14(2): 405-423. doi: 10.12000/JR24102
    [2]WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237
    [3]QIU Xiaolan, LUO Yitong, SONG Shujie, PENG Lingxiao, CHENG Yao, YAN Qiancheng, SHANGGUAN Songtao, JIAO Zekun, ZHANG Zhe, DING Chibiao. Microwave Vision Three-dimensional SAR Experimental System and Full-polarimetric Data Processing Method[J]. Journal of Radars, 2024, 13(5): 941-954. doi: 10.12000/JR24137
    [4]JI Yifei, DONG Zhen, ZHANG Yongsheng, XIONG Chao, MAO Wenfei, WANG Cheng. Research Overview on Ionospheric Probing Based on Spaceborne Synthetic Aperture Radars[J]. Journal of Radars. doi: 10.12000/JR24172
    [5]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [6]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [7]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [8]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [9]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [10]WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109
    [11]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [12]Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033
    [13]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [14]Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. Journal of Radars, 2017, 6(2): 221-228. doi: 10.12000/JR16129
    [15]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [16]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [17]Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [18]Zeng Tao. Bistatic SAR: State of the Art and Development Trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093
    [19]CHEN Lin, ZHANG Jing-Jing, LI Yang, HONG Wen. General Calibration Algorithm for Single-transmitting-dual-receiving Polarimetric SAR System[J]. Journal of Radars, 2012, 1(3): 323-328. doi: 10.3724/SP.J.1300.2012.20062
    [20]Wang Hai-yang, Jiang Yue-song. A Synthetic Aperture System Based on Backscattering Signals of Compass Navigation Satellite: Concept and Feasibility[J]. Journal of Radars, 2012, 1(2): 209-216. doi: 10.3724/SP.J.1300.2012.20041
  • Cited by

    Periodical cited type(7)

    1. 殷君君,罗嘉豪,李响,代晓康,杨健. 基于极化SAR梯度和复Wishart分类器的舰船检测. 雷达学报. 2024(02): 396-410 . 本站查看
    2. 薛喜平,苏彦,李海英,戴舜,孔德庆,朱新颖. 合成孔径雷达在深空探测任务中的应用与发展趋势. 天文学进展. 2024(02): 240-256 .
    3. 李沐阳,胡程,王锐,李卫东,姜琦,李云龙,钱李昌,王江涛. 高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计. 雷达学报. 2023(02): 425-440 . 本站查看
    4. 陈思伟,李永祯,王雪松,肖顺平. 极化SAR目标散射旋转域解译理论与应用. 雷达学报. 2017(05): 442-455 . 本站查看
    5. 祝晓静,李飞,王宇,王伟,孙翔. 基于改进方位相位编码的全极化SAR距离模糊抑制方法. 雷达学报. 2017(04): 420-431 . 本站查看
    6. 赵春雷,王亚梁,阳云龙,毛兴鹏,于长军. 雷达极化信息获取及极化信号处理技术研究综述. 雷达学报. 2016(06): 620-638 . 本站查看
    7. 计科峰,王海波,冷祥光,邢相薇,康利鸿. 星载简缩极化SAR船舶目标检测技术研究. 雷达学报. 2016(06): 607-619 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.2 %FULLTEXT: 13.2 %META: 70.8 %META: 70.8 %PDF: 16.0 %PDF: 16.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.2 %其他: 17.2 %其他: 1.0 %其他: 1.0 %Central District: 0.1 %Central District: 0.1 %China: 0.9 %China: 0.9 %Halfweg: 0.0 %Halfweg: 0.0 %Herndon: 0.1 %Herndon: 0.1 %India: 0.1 %India: 0.1 %Philippines: 0.0 %Philippines: 0.0 %Reserved: 0.1 %Reserved: 0.1 %Reynoldsburg: 0.1 %Reynoldsburg: 0.1 %San Mateo: 0.0 %San Mateo: 0.0 %United States: 0.0 %United States: 0.0 %[]: 0.3 %[]: 0.3 %三门峡: 0.2 %三门峡: 0.2 %上海: 0.4 %上海: 0.4 %上海市: 0.0 %上海市: 0.0 %东京: 0.1 %东京: 0.1 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %丹东: 0.0 %丹东: 0.0 %伊犁: 0.1 %伊犁: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.3 %兰州: 0.3 %包头: 0.0 %包头: 0.0 %北京: 15.4 %北京: 15.4 %十堰: 0.0 %十堰: 0.0 %南京: 1.3 %南京: 1.3 %南宁: 0.2 %南宁: 0.2 %南昌: 0.3 %南昌: 0.3 %厦门: 0.2 %厦门: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.0 %哥伦布: 0.0 %大连: 0.5 %大连: 0.5 %天津: 0.3 %天津: 0.3 %威海: 0.0 %威海: 0.0 %官坑: 0.2 %官坑: 0.2 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.5 %库比蒂诺: 0.5 %开封: 0.2 %开封: 0.2 %张家口: 0.9 %张家口: 0.9 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.1 %张家界: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.7 %成都: 0.7 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.5 %昆明: 0.5 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.3 %杭州: 1.3 %枣庄: 0.0 %枣庄: 0.0 %桂林: 0.1 %桂林: 0.1 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.0 %海口: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.2 %温州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.0 %湛江: 0.0 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.1 %潍坊: 0.1 %焦作: 0.0 %焦作: 0.0 %珀斯: 0.1 %珀斯: 0.1 %珠海: 0.1 %珠海: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.3 %绵阳: 0.3 %美国: 0.0 %美国: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 20.9 %芒廷维尤: 20.9 %芝加哥: 0.5 %芝加哥: 0.5 %莆田: 0.0 %莆田: 0.0 %莱芜: 0.0 %莱芜: 0.0 %营口: 0.1 %营口: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 20.2 %西宁: 20.2 %西安: 1.8 %西安: 1.8 %西安市: 0.0 %西安市: 0.0 %西雅图: 0.0 %西雅图: 0.0 %运城: 0.5 %运城: 0.5 %郑州: 0.7 %郑州: 0.7 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.0 %重庆: 0.0 %金华: 0.0 %金华: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 1.4 %长沙: 1.4 %长沙市: 0.0 %长沙市: 0.0 %防城港: 0.0 %防城港: 0.0 %雪兰莪: 0.2 %雪兰莪: 0.2 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马湾: 0.0 %马湾: 0.0 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.2 %黄冈: 0.2 %黄冈市黄梅县: 0.0 %黄冈市黄梅县: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他Central DistrictChinaHalfwegHerndonIndiaPhilippinesReservedReynoldsburgSan MateoUnited States[]三门峡上海上海市东京东莞中卫丹东伊犁佛山保定六安兰州包头北京十堰南京南宁南昌厦门台北台州合肥哈尔滨哥伦布大连天津威海官坑巴音郭楞常州常德广州库比蒂诺开封张家口张家口市张家界惠州成都新乡无锡旧金山昆明朝阳杭州枣庄桂林武汉沈阳济南海口淄博深圳温州湘潭湛江漯河潍坊焦作珀斯珠海盐城石家庄福州秦皇岛纽约绵阳美国美国伊利诺斯芝加哥芒廷维尤芝加哥莆田莱芜营口葫芦岛蚌埠衡水衡阳衢州西宁西安西安市西雅图运城郑州鄂州重庆金华长春长沙长沙市防城港雪兰莪青岛香港特别行政区马湾驻马店黄冈黄冈市黄梅县龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2487) PDF downloads(1960) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint