Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
Citation: Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071

Prototype Theory Based Feature Representation for PolSAR Images

DOI: 10.12000/JR15071
Funds:

The National Natural Science Foundation of China (61271401, 61461040), The Projects of Inner Mongolia Science Technology Plan (20140155, 20131108)

  • Received Date: 2015-06-04
  • Rev Recd Date: 2015-12-22
  • Publish Date: 2016-04-28
  • This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our method can efficiently represent polarimetric signatures of different land covers and yield satisfactory classification results.

     

  • [1]
    Cloude S. Polarisation: Applications in Remote Sensing[M]. London, U.K.: Oxford University Press, 2009. 周晓光, 匡纲要, 万建伟. 极化SAR图像分类综述[J]. 信号处理, 2008, 24(5): 806-812.
    [2]
    Zhou Xiao-guang, Kuang Gang-yao, and Wan Jian-wei. A review of polarimetric SAR image classification[J]. Signal Processing, 2008, 24(5): 806-812.
    [3]
    Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [4]
    Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
    [5]
    Yamaguchi Y, Moriyama T, Ishido M, et al.. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706. 闫剑, 李洋, 尹嫱, 等. 引入有取向二面角散射的Freeman-Durden分解[J]. 雷达学报, 2014, 3(5): 574-582.
    [6]
    Yan Jian, Li Yang, Yin Qiang, et al.. Freeman-Durden decomposition with oriented dihedral scattering[J]. Journal of Radars, 2014, 3(5): 574-582. 滑文强, 王爽, 侯彪. 基于半监督学习的SVM-Wishart极化 SAR 图像分类方法[J]. 雷达学报, 2015, 4(1): 93-98.
    [7]
    Hua Wen-qiang, Wang Shuang, and Hou Biao. Semi-supervised learning for classification of polarimetric SAR images based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. 李洪忠, 程劲松, 王超, 等. 基于相似性的POLSAR 占优散射归类及非监督聚类[J]. 电子与信息学报, 2012, 34(6): 1501-1505.
    [8]
    Li Hong-zhong, Cheng Jin-song, Wang Chao, et al.. POLSAR dominant scattering mechanism clustering and unsupervised classification based on similarity[J]. Journal of Electronics Information Technology, 2012, 34(6): 1501-1505. 陈博, 王爽, 焦李成, 等. 利用0-1矩阵分解集成的极化SAR图像分类[J]. 电子与信息学报, 2015, 37(6): 1495-1501.
    [9]
    Chen Bo, Wang Shuang, Jiao Li-cheng, et al.. Polarimetric SAR image classification via weighted ensemble based on 0-1 matrix decomposition[J]. Journal of Electronics Information Technology, 2015, 37(6): 1495-1501.
    [10]
    Wohlhart P, Kostinger M, Donoser M, et al.. Optimizing 1-Nearest prototype classifiers[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 460-467.
    [11]
    Quattoni A, Collins M, and Darrell T. Transfer learning for image classification with sparse prototype representations[C].IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
    [12]
    王宇, 杨莉. 模糊k-prototypes聚类算法的一种改进算法[J]. 大连理工大学学报, 2003, 43(6): 849-852. Wang Yu and Yang Li. An improved algorithm for fuzzy k-prototypes algorithm[J]. Journal of Dalian University of Technology, 2003, 43(6): 849-852. 陈韡, 王雷, 蒋子云. 基于K-prototypes的混合属性数据聚类算法[J]. 计算机应用, 2010, 30(8): 2003-2005.
    [13]
    Chen Wei, Wang Lei, and Jiang Zi-yun. K-prototypes based clustering algorithm for data mixed with numeric and categorical values[J]. Journal of Computer Application, 2010, 30(8): 2003-2005.
    [14]
    Crammer K, Gilad-Bachrach R, Navot A, et al.. Margin analysis of the LVQ algorithm[C]. Advances in Neural Information Processing Systems, 2002: 462-469.
    [15]
    Kostinger M, Wohlhart P, Roth P M, et al.. Joint learning of discriminative prototypes and large margin nearest neighbor classifiers[C]. IEEE International Conference on Computer Vision, 2013: 3112-3119.
    [16]
    Dai D and Gool L V. Ensemble projection for semi-supervised image classification[C]. IEEE International Conference on Computer Vision, 2013: 2072-2079.
    [17]
    Wang D. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
    [18]
    Lin Z, Jiang Z, and Davis L S. Recognizing actions by shape-motion prototype trees[C]. 2009 IEEE 12th International Conference on Computer Vision, 2009: 444-451.
    [19]
    Molinier M, Laaksonen J, Rauste Y, et al.. Detecting changes in polarimetric SAR data with content-based image retrieval[C]. IEEE International on Geoscience and Remote Sensing Symposium, 2007: 2390-2393.
    [20]
    Lee J S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, FL: CRC Press, 2009.
    [21]
    Achanta R, Shaji A, Smith K, et al.. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    [22]
    Kersten P R, Lee J S, and Ainsworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 519-527.
    [23]
    Collins M, Schapire R E, and Singer Y. Logistic regression, adaboost and bregman distances[J]. Machine Learning, 2002, 48(1): 253-285.
    [24]
    Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
    [25]
    Zhao Y and Karypis G. Criterion functions for document clustering: experiments and analysis[R]. Technical Report, 2001, 1: 40.
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]ZHANG Jiaxiang, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. An Intelligent Frequency Decision Method for a Frequency Agile Radar Based on Deep Reinforcement Learning[J]. Journal of Radars, 2024, 13(1): 227-239. doi: 10.12000/JR23197
    [3]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [4]XU Feng, JIN Yaqiu. Microwave Vision and Intelligent Perception of Radar Imagery[J]. Journal of Radars, 2024, 13(2): 285-306. doi: 10.12000/JR23225
    [5]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [6]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [7]LIU Che, YANG Kaiqiao, BAO Jianghan, YU Wenming, YOU Jianwei, LI Lianlin, CUI Tiejun. Recent Progress in Intelligent Electromagnetic Computing[J]. Journal of Radars, 2023, 12(4): 657-683. doi: 10.12000/JR23133
    [8]GAO Xunzhang, ZHANG Zhiwei, LIU Mei, GONG Zhenghui, LI Xiang. Intelligent Radar Image Recognition Countermeasures: A Review[J]. Journal of Radars, 2023, 12(4): 696-712. doi: 10.12000/JR23098
    [9]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [10]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [11]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [12]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [13]LI Lianlin, CUI Tiejun. Recent Progress in Intelligent Electromagnetic Sensing[J]. Journal of Radars, 2021, 10(2): 183-190. doi: 10.12000/JR21049
    [14]WEI Yinsheng, ZHOU Jianyu, XU Rongqing. Intelligent Suppression Method for Ionospheric Clutter Based on Clustering and Greedy Strategy[J]. Journal of Radars, 2020, 9(4): 589-607. doi: 10.12000/JR20086
    [15]LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [16]JIN Yaqiu. Multimode Remote Sensing Intelligent Information and Target Recognition: Physical Intelligence of Microwave Vision (in English)[J]. Journal of Radars, 2019, 8(6): 710-716. doi: 10.12000/JR19083
    [17]CUI Guolong, YU Xianxiang, YANG Jing, FU Yue, KONG Lingjiang. An Overview of Waveform Optimization Methods for Cognitive Radar[J]. Journal of Radars, 2019, 8(5): 537-557. doi: 10.12000/JR19072
    [18]Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
    [19]Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
    [20]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
  • Cited by

    Periodical cited type(6)

    1. 张俊,位门,吕璐. 基于改进YOLOx-nano的海上红外目标检测算法. 红外. 2025(02): 49-56 .
    2. 张鹏举,黄勇,张洪峰,柳超,耿伟智,徐以东. 结合自适应脉压与排列熵特征的陆海分割方法. 海军航空大学学报. 2024(05): 587-594 .
    3. 邓稼麒,李正周,党楚佳,陈文豪,秦天奇. 基于海面场景感知的雷达目标检测方法. 中国电子科学研究院学报. 2023(02): 129-137 .
    4. 董云龙,张兆祥,刘宁波,黄勇,丁昊,张梦雨. 雷达回波三特征联合海况分类方法. 雷达科学与技术. 2023(02): 189-198 .
    5. 林锋,章瑞. 基于二值化条件随机场卷积网络的极化SAR海陆分割. 现代雷达. 2023(07): 15-20 .
    6. 戴牧宸,冷祥光,熊博莅,计科峰. 基于改进双边网络的SAR图像海陆分割方法. 雷达学报. 2020(05): 886-897 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 63.5 %META: 63.5 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 0.8 %China: 0.8 %France: 0.0 %France: 0.0 %India: 0.0 %India: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.9 %[]: 0.9 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.2 %临汾: 0.2 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %元朗新墟: 0.3 %元朗新墟: 0.3 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 13.1 %北京: 13.1 %北京市: 0.3 %北京市: 0.3 %北海: 0.1 %北海: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.4 %南京: 2.4 %南充: 0.1 %南充: 0.1 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %南阳: 0.0 %南阳: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.3 %台州: 0.3 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大庆: 0.0 %大庆: 0.0 %大理: 0.0 %大理: 0.0 %大连: 0.2 %大连: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.0 %太原: 0.0 %威海: 0.1 %威海: 0.1 %安康: 0.1 %安康: 0.1 %安徽: 0.0 %安徽: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宿州: 0.1 %宿州: 0.1 %宿迁: 0.0 %宿迁: 0.0 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广安: 0.0 %广安: 0.0 %广州: 0.4 %广州: 0.4 %广西壮族自治区南宁: 0.0 %广西壮族自治区南宁: 0.0 %广西壮族自治区桂林: 0.1 %广西壮族自治区桂林: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.0 %延安: 0.0 %张家口: 1.5 %张家口: 1.5 %张家口市: 0.1 %张家口市: 0.1 %张掖: 0.2 %张掖: 0.2 %徐州: 0.0 %徐州: 0.0 %成都: 1.6 %成都: 1.6 %扬州: 0.6 %扬州: 0.6 %新乡: 0.3 %新乡: 0.3 %新疆维吾尔自治区哈密: 0.0 %新疆维吾尔自治区哈密: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.2 %杭州: 1.2 %杭州市: 0.0 %杭州市: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 1.5 %武汉: 1.5 %池州: 0.0 %池州: 0.0 %沈阳: 0.3 %沈阳: 0.3 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.6 %济南: 0.6 %海口: 0.0 %海口: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.0 %湛江: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.4 %漯河: 0.4 %潮州: 0.1 %潮州: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %益阳: 0.1 %益阳: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.0 %绵阳: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 18.9 %芒廷维尤: 18.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %荆门: 0.0 %荆门: 0.0 %莆田: 0.0 %莆田: 0.0 %莱芜: 0.1 %莱芜: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 29.7 %西宁: 29.7 %西安: 4.3 %西安: 4.3 %西安市未央区: 0.1 %西安市未央区: 0.1 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %通化: 0.0 %通化: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 1.4 %郑州: 1.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.7 %长沙: 0.7 %青岛: 0.3 %青岛: 0.3 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %其他其他Central DistrictChinaFranceIndiaTaiwan, ChinaUnited States[]三亚三明上海东莞中卫临汾临沂丹东佛山保定元朗新墟六安兰州兰辛凤凰城加利福尼亚州包头北京北京市北海十堰南京南充南昌南通南阳台北台州台湾省合肥呼和浩特咸阳哈尔滨哥伦布商洛嘉兴大庆大理大连天津太原威海安康安徽宜春宝鸡宿州宿迁巴中巴彦淖尔常州常德广安广州广西壮族自治区南宁广西壮族自治区桂林库比蒂诺延安张家口张家口市张掖徐州成都扬州新乡新疆维吾尔自治区哈密无锡昆明晋城朝阳杭州杭州市格兰特县榆林武汉池州沈阳法尔肯施泰因洛杉矶洛阳济南海口淮南淮安深圳温州渭南湖州湘潭湛江滁州漯河潮州烟台焦作玉林益阳盐城石家庄福州绍兴绵阳美国伊利诺斯芝加哥舟山芒廷维尤芝加哥苏州荆门莆田莱芜葫芦岛衡水衢州西宁西安西安市未央区西安市鄠邑区贵港贵阳赣州运城连云港通化邢台邯郸郑州重庆金华长春长沙青岛香港香港特别行政区马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2747) PDF downloads(1141) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint