Ren Bo, Shi Longfei, Wang Guoyu. Polarimetric Analysis of the Interference from Base Stations to UHF-band Radar[J]. Journal of Radars, 2016, 5(2): 164-173. doi: 10.12000/JR15134
Citation: Ding Hao, Wang Guoqing, Liu Ningbo, Guan Jian. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background[J]. Journal of Radars, 2017, 6(3): 275-284. doi: 10.12000/JR16088

Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background

DOI: 10.12000/JR16088
Funds:

Foundation Items: The National Natural Science Foundation of China 61531020

Foundation Items: The National Natural Science Foundation of China 61501487

The Natural Science Foundation of Shandong 2015ZRA06052

Foundation Items: The National Natural Science Foundation of China 61471381

Foundation Items: The National Natural Science Foundation of China 61471382

Foundation Items: The National Natural Science Foundation of China 61401495

The Aeronautical Science Foundation of China 20150184003

  • Received Date: 2016-07-18
  • Rev Recd Date: 2016-10-24
  • Available Online: 2016-11-23
  • Publish Date: 2017-06-28
  • Considering an inverse Gamma prior distribution model for texture, the adaptive detection problems for both first order Gaussian and second order Gaussian subspace targets are researched in a compound Gaussian sea clutter. Test statistics are derived on the basis of the two-step generalized likelihood ratio test. From these tests, new adaptive detectors are proposed by substituting the covariance matrix with estimation results from the Sample Covariance Matrix (SCM), normalized SCM, and fixed point estimator. The proposed detectors consider the prior distribution model for sea clutter during the design stage, and they model parameters that match the working environment during the detection stage. Analysis and validation results indicate that the detection performance of the proposed detectors out performs existing AMF (Adaptive Matched Filter, AMF) and ANMF (Adaptive Normalized Matched Filter, ANMF) detectors.

     

  • [1]
    何友, 黄勇, 关键, 等.海杂波中的雷达目标检测技术综述[J].现代雷达, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [2]
    Ward K, Tough R, and Watts S. Sea Clutter: Scattering, the K-Distribution and Radar Performance, 2nd ed[M]. London: The Institution of Engineering and Technology, 2013.
    [3]
    Gini F and Farina A. Vector subspace detection in compound-Gaussian clutter, Part Ⅰ: Surgey and new results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1295-1311. doi: 10.1109/TAES.2002.1145751
    [4]
    Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617-625. doi: 10.1109/7.381910
    [5]
    Gini F. Suboptimum coherent radar detection in a mixture of K-distributed and Gaussian clutter[J]. IEE Proceedings, Radar, Sonar and Navigation, 1997, 144(1): 39-48. doi: 10.1049/ip-rsn:19970967
    [6]
    Jin Y and Friedlander B. A CFAR adaptive subspace detector for second-order Gaussian signals[J]. IEEE Transactions on Signal Processing, 2005, 53(3): 871-884. doi: 10.1109/TSP.2004.842196
    [7]
    Bon N, Khenchaf A, and Garello R. GLRT subspace detection for range and Doppler distributed targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 678-696. doi: 10.1109/TAES.2008.4560214
    [8]
    Liu J, Zhang Z J, Yang Y, et al.. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5126-5140. doi: 10.1109/TSP.2011.2164073
    [9]
    Robey F C, Fuhrman D L, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. doi: 10.1109/7.135446
    [10]
    Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16. doi: 10.1109/78.890324
    [11]
    Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541. doi: 10.1109/78.782198
    [12]
    Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅰ: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345-2357. doi: 10.1109/TSP.2014.2309556
    [13]
    Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅱ: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369. doi: 10.1109/TSP.2014.2309553
    [14]
    丁昊, 薛永华, 黄勇, 等.均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J].雷达学报, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml

    Ding H, Xue Y H, Huang Y, et al.. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Jounal of Radars, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml
    [15]
    JIAN T, HE Y, LIAO G S, et al.. Adaptive persymmetric detector of generalised likelihood ratio test in homogeneous environment[J]. IET Signal Processing, 2016, 10(2): 91-99. doi: 10.1049/iet-spr.2015.0200
    [16]
    Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248-250. doi: 10.1109/97.511809
    [17]
    Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2): 284-302. doi: 10.1109/JOE.2004.826901
    [18]
    Gao Y C, Liao G S, and Liu W J. High resolution radar detection in interference and non-homogeneous noise[J]. IEEE Signal Processing Letters, 2016. DOI: 10.1109/ LSP.2016.2597738.
    [19]
    刘明, 水鹏朗.海杂波背景下的组合自适应GLRT-LTD[J].电子与信息学报, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm

    Liu M and Shui P L. Combined adaptive GLRT-LTD against sea clutter[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm
    [20]
    GAO Y C, LIAO G S, ZHU S Q, et al.. A persymmetric GLRT for adaptive detection in compound-Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618. doi: 10.1109/LSP.2013.2259232
    [21]
    Kong L J, Li N, Cui G L, et al.. Adaptive Bayesian detection for multiple-input multiple-output radar in compound-Gaussian clutter with random texture[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 689-698. https://www.researchgate.net/publication/295257939_Adaptive_Bayesian_detection_for_multiple-input_multiple-output_radar_in_compound-Gaussian_clutter_with_random_texture
    [22]
    Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-780. doi: 10.1109/TAES.2007.4285370
    [23]
    Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5391-5396. doi: 10.1109/TSP.2010.2052922
    [24]
    Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77. doi: 10.1109/TAES.2012.6129621
    [25]
    Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1833-1837. doi: 10.1109/LGRS.2015.2430371
    [26]
    Gini F and Farina A. Matched subspace CFAR detection of hovering helicopters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1293-1305. doi: 10.1109/7.805446
    [27]
    Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 903-916. doi: 10.1109/7.784060
    [28]
    Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2): 102-112. https://www.researchgate.net/publication/3361247_Radar_sea-clutter_at_low_grazing_angles
  • Relative Articles

    [1]XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-Waveform Small-Footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245
    [2]HOU Qingsen, LI Guangzuo, XU Zhongqiu, LIU Chenyu, HONG Wen, WU Yirong. A ISAR Imaging Method for Space Targets Based on Fast Estimation of Joint Motion Parameters[J]. Journal of Radars, 2025, 14(2): 424-438. doi: 10.12000/JR24251
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]GAO Yongchan, PAN Liyan, LI Yachao, ZUO Lei. Multi-rank Range-spread Target Detection Method for Space/Time Symmetric Array Radar under Non-Gaussian Clutter Background[J]. Journal of Radars, 2022, 11(5): 765-777. doi: 10.12000/JR22013
    [5]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [6]HUANG Bang, WANG Wenqin, LI Ping, JIAN Jiangwei, ZHANG Shunsheng. Adaptive Distributed Target Detection for FDA-MIMO Radar with Rao Detector[J]. Journal of Radars. doi: 10.12000/JR21191
    [7]ZHOU Yejian, MA Yan, ZHANG Lei, ZHONG Weijun. Review of On-orbit State Estimation of Space Targets with Radar Imagery(in English)[J]. Journal of Radars, 2021, 10(4): 607-621. doi: 10.12000/JR21086
    [8]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [9]XU Shuwen, SHI Xingyu, SHUI Penglang. An Adaptive Detector with Mismatched Signals Rejection in Compound Gaussian Clutter[J]. Journal of Radars, 2019, 8(3): 326-334. doi: 10.12000/JR19030
    [10]ZHOU Ming, MA Liang, WANG Ning, YANG Yuhao. Land-sea Separation and Sea Surface Zoning Algorithms for Sea Surface Target[J]. Journal of Radars, 2019, 8(3): 366-372. doi: 10.12000/JR19036
    [11]HAN Jinwang, ZHANG Zijing, LIU Jun, ZHAO Yongbo. Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter[J]. Journal of Radars, 2019, 8(4): 501-509. doi: 10.12000/JR18090
    [12]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [13]Bu Yuncheng, Wang Yu, Zhang Fubo, Ji Guangyu, Chen Longyong, Liang Xingdong. Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace[J]. Journal of Radars, 2018, 7(3): 335-345. doi: 10.12000/JR18007
    [14]Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
    [15]Li Hai, Liu Xin-long, Zhou Meng, Liu Wei-jian. Detection of Maneuvering Target Based on Modified AMF[J]. Journal of Radars, 2015, 4(5): 552-559. doi: 10.12000/JR15105
    [16]Zou Kun, Wu De-wei, Zhang Bin, Li Wei. A Tunable Adaptive Detector for Mismatched Signal[J]. Journal of Radars, 2015, 4(4): 411-417. doi: 10.12000/JR14129
    [17]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
    [18]Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
    [19]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [20]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
  • Cited by

    Periodical cited type(5)

    1. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 .
    2. 罗琼,周菊玲. 加权平衡损失函数下逆伽马分布的Bayes估计. 曲阜师范大学学报(自然科学版). 2023(02): 19-24 .
    3. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
    4. 丁昊,刘宁波,董云龙,陈小龙,关键. 雷达海杂波测量试验回顾与展望. 雷达学报. 2019(03): 281-302 . 本站查看
    5. 时艳玲,杜宇翔,蒋锐,王昕. 部分均匀海杂波中基于分组加权的协方差矩阵估计算法. 信号处理. 2019(07): 1170-1179 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 66.6 %META: 66.6 %PDF: 11.9 %PDF: 11.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 0.2 %其他: 0.2 %Central District: 0.0 %Central District: 0.0 %China: 0.2 %China: 0.2 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %[]: 0.3 %[]: 0.3 %三明: 0.1 %三明: 0.1 %上海: 0.7 %上海: 0.7 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.1 %北京: 12.1 %北京市: 0.1 %北京市: 0.1 %北海: 0.0 %北海: 0.0 %南京: 0.8 %南京: 0.8 %南昌: 0.1 %南昌: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %大同: 0.0 %大同: 0.0 %天津: 0.1 %天津: 0.1 %威海: 0.0 %威海: 0.0 %娄底: 0.0 %娄底: 0.0 %安康: 0.0 %安康: 0.0 %宿迁: 0.2 %宿迁: 0.2 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.2 %广州: 0.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 2.5 %张家口: 2.5 %徐州: 0.0 %徐州: 0.0 %成都: 0.1 %成都: 0.1 %扬州: 0.1 %扬州: 0.1 %新乡: 0.4 %新乡: 0.4 %无锡: 0.1 %无锡: 0.1 %杭州: 2.0 %杭州: 2.0 %武汉: 0.0 %武汉: 0.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %济宁: 0.0 %济宁: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.3 %深圳: 0.3 %渭南: 0.0 %渭南: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.3 %漯河: 0.3 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.3 %烟台: 0.3 %焦作: 0.2 %焦作: 0.2 %玉林: 0.0 %玉林: 0.0 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.0 %石家庄市: 0.0 %纽约: 0.1 %纽约: 0.1 %美国: 0.0 %美国: 0.0 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.2 %芝加哥: 0.2 %菏泽: 0.0 %菏泽: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 41.1 %西宁: 41.1 %西安: 0.9 %西安: 0.9 %贵港: 0.1 %贵港: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %郑州: 0.9 %郑州: 0.9 %重庆: 0.0 %重庆: 0.0 %长沙: 0.0 %长沙: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他Central DistrictChinaIndiaTaiwan, China[]三明上海丹东佛山保定六安加利福尼亚州包头北京北京市北海南京南昌台北台州呼和浩特哥伦布大同天津威海娄底安康宿迁巴彦淖尔常州广州库比蒂诺张家口徐州成都扬州新乡无锡杭州武汉沈阳洛阳济南济宁淮南淮安深圳渭南湖州湘潭滨州漯河漳州潍坊烟台焦作玉林眉山石家庄石家庄市纽约美国芒廷维尤芝加哥菏泽衢州西宁西安贵港赣州运城郑州重庆长沙青岛鞍山香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2205) PDF downloads(796) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint