Citation: | Ding Hao, Wang Guoqing, Liu Ningbo, Guan Jian. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background[J]. Journal of Radars, 2017, 6(3): 275-284. doi: 10.12000/JR16088 |
[1] |
何友, 黄勇, 关键, 等.海杂波中的雷达目标检测技术综述[J].现代雷达, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001
He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001
|
[2] |
Ward K, Tough R, and Watts S. Sea Clutter: Scattering, the K-Distribution and Radar Performance, 2nd ed[M]. London: The Institution of Engineering and Technology, 2013.
|
[3] |
Gini F and Farina A. Vector subspace detection in compound-Gaussian clutter, Part Ⅰ: Surgey and new results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1295-1311. doi: 10.1109/TAES.2002.1145751
|
[4] |
Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617-625. doi: 10.1109/7.381910
|
[5] |
Gini F. Suboptimum coherent radar detection in a mixture of K-distributed and Gaussian clutter[J]. IEE Proceedings, Radar, Sonar and Navigation, 1997, 144(1): 39-48. doi: 10.1049/ip-rsn:19970967
|
[6] |
Jin Y and Friedlander B. A CFAR adaptive subspace detector for second-order Gaussian signals[J]. IEEE Transactions on Signal Processing, 2005, 53(3): 871-884. doi: 10.1109/TSP.2004.842196
|
[7] |
Bon N, Khenchaf A, and Garello R. GLRT subspace detection for range and Doppler distributed targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 678-696. doi: 10.1109/TAES.2008.4560214
|
[8] |
Liu J, Zhang Z J, Yang Y, et al.. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5126-5140. doi: 10.1109/TSP.2011.2164073
|
[9] |
Robey F C, Fuhrman D L, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. doi: 10.1109/7.135446
|
[10] |
Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16. doi: 10.1109/78.890324
|
[11] |
Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541. doi: 10.1109/78.782198
|
[12] |
Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅰ: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345-2357. doi: 10.1109/TSP.2014.2309556
|
[13] |
Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅱ: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369. doi: 10.1109/TSP.2014.2309553
|
[14] |
丁昊, 薛永华, 黄勇, 等.均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J].雷达学报, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml
Ding H, Xue Y H, Huang Y, et al.. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Jounal of Radars, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml
|
[15] |
JIAN T, HE Y, LIAO G S, et al.. Adaptive persymmetric detector of generalised likelihood ratio test in homogeneous environment[J]. IET Signal Processing, 2016, 10(2): 91-99. doi: 10.1049/iet-spr.2015.0200
|
[16] |
Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248-250. doi: 10.1109/97.511809
|
[17] |
Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2): 284-302. doi: 10.1109/JOE.2004.826901
|
[18] |
Gao Y C, Liao G S, and Liu W J. High resolution radar detection in interference and non-homogeneous noise[J]. IEEE Signal Processing Letters, 2016. DOI: 10.1109/ LSP.2016.2597738.
|
[19] |
刘明, 水鹏朗.海杂波背景下的组合自适应GLRT-LTD[J].电子与信息学报, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm
Liu M and Shui P L. Combined adaptive GLRT-LTD against sea clutter[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm
|
[20] |
GAO Y C, LIAO G S, ZHU S Q, et al.. A persymmetric GLRT for adaptive detection in compound-Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618. doi: 10.1109/LSP.2013.2259232
|
[21] |
Kong L J, Li N, Cui G L, et al.. Adaptive Bayesian detection for multiple-input multiple-output radar in compound-Gaussian clutter with random texture[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 689-698. https://www.researchgate.net/publication/295257939_Adaptive_Bayesian_detection_for_multiple-input_multiple-output_radar_in_compound-Gaussian_clutter_with_random_texture
|
[22] |
Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-780. doi: 10.1109/TAES.2007.4285370
|
[23] |
Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5391-5396. doi: 10.1109/TSP.2010.2052922
|
[24] |
Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77. doi: 10.1109/TAES.2012.6129621
|
[25] |
Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1833-1837. doi: 10.1109/LGRS.2015.2430371
|
[26] |
Gini F and Farina A. Matched subspace CFAR detection of hovering helicopters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1293-1305. doi: 10.1109/7.805446
|
[27] |
Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 903-916. doi: 10.1109/7.784060
|
[28] |
Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2): 102-112. https://www.researchgate.net/publication/3361247_Radar_sea-clutter_at_low_grazing_angles
|
[1] | XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-Waveform Small-Footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245 |
[2] | HOU Qingsen, LI Guangzuo, XU Zhongqiu, LIU Chenyu, HONG Wen, WU Yirong. A ISAR Imaging Method for Space Targets Based on Fast Estimation of Joint Motion Parameters[J]. Journal of Radars, 2025, 14(2): 424-438. doi: 10.12000/JR24251 |
[3] | WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241 |
[4] | GAO Yongchan, PAN Liyan, LI Yachao, ZUO Lei. Multi-rank Range-spread Target Detection Method for Space/Time Symmetric Array Radar under Non-Gaussian Clutter Background[J]. Journal of Radars, 2022, 11(5): 765-777. doi: 10.12000/JR22013 |
[5] | DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121 |
[6] | HUANG Bang, WANG Wenqin, LI Ping, JIAN Jiangwei, ZHANG Shunsheng. Adaptive Distributed Target Detection for FDA-MIMO Radar with Rao Detector[J]. Journal of Radars. doi: 10.12000/JR21191 |
[7] | ZHOU Yejian, MA Yan, ZHANG Lei, ZHONG Weijun. Review of On-orbit State Estimation of Space Targets with Radar Imagery(in English)[J]. Journal of Radars, 2021, 10(4): 607-621. doi: 10.12000/JR21086 |
[8] | ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050 |
[9] | XU Shuwen, SHI Xingyu, SHUI Penglang. An Adaptive Detector with Mismatched Signals Rejection in Compound Gaussian Clutter[J]. Journal of Radars, 2019, 8(3): 326-334. doi: 10.12000/JR19030 |
[10] | ZHOU Ming, MA Liang, WANG Ning, YANG Yuhao. Land-sea Separation and Sea Surface Zoning Algorithms for Sea Surface Target[J]. Journal of Radars, 2019, 8(3): 366-372. doi: 10.12000/JR19036 |
[11] | HAN Jinwang, ZHANG Zijing, LIU Jun, ZHAO Yongbo. Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter[J]. Journal of Radars, 2019, 8(4): 501-509. doi: 10.12000/JR18090 |
[12] | Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025 |
[13] | Bu Yuncheng, Wang Yu, Zhang Fubo, Ji Guangyu, Chen Longyong, Liang Xingdong. Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace[J]. Journal of Radars, 2018, 7(3): 335-345. doi: 10.12000/JR18007 |
[14] | Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076 |
[15] | Li Hai, Liu Xin-long, Zhou Meng, Liu Wei-jian. Detection of Maneuvering Target Based on Modified AMF[J]. Journal of Radars, 2015, 4(5): 552-559. doi: 10.12000/JR15105 |
[16] | Zou Kun, Wu De-wei, Zhang Bin, Li Wei. A Tunable Adaptive Detector for Mismatched Signal[J]. Journal of Radars, 2015, 4(4): 411-417. doi: 10.12000/JR14129 |
[17] | Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133 |
[18] | Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080 |
[19] | Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081 |
[20] | Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083 |
1. | 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 . ![]() | |
2. | 罗琼,周菊玲. 加权平衡损失函数下逆伽马分布的Bayes估计. 曲阜师范大学学报(自然科学版). 2023(02): 19-24 . ![]() | |
3. | 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . ![]() | |
4. | 丁昊,刘宁波,董云龙,陈小龙,关键. 雷达海杂波测量试验回顾与展望. 雷达学报. 2019(03): 281-302 . ![]() | |
5. | 时艳玲,杜宇翔,蒋锐,王昕. 部分均匀海杂波中基于分组加权的协方差矩阵估计算法. 信号处理. 2019(07): 1170-1179 . ![]() |