Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
Citation: Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076

A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction

DOI: 10.12000/JR15076
Funds:

The National Natural Science Foundation of China (61302164), The Fundamental Research Funds for the Central Universities (YS1404), The Beijing Higher Education Young Elite Teacher Project (YETP0500)

  • Received Date: 2015-06-17
  • Rev Recd Date: 2015-10-16
  • Publish Date: 2015-12-28
  • This paper presents a novel texture feature extraction method based on a Gabor filter and Three-Patch Local Binary Patterns (TPLBP) for Synthetic Aperture Rader (SAR) target recognition. First, SAR images are processed by a Gabor filter in different directions to enhance the significant features of the targets and their shadows. Then, the effective local texture features based on the Gabor filtered images are extracted by TPLBP. This not only overcomes the shortcoming of Local Binary Patterns (LBP), which cannot describe texture features for large scale neighborhoods, but also maintains the rotation invariant characteristic which alleviates the impact of the direction variations of SAR targets on recognition performance. Finally, we use an Extreme Learning Machine (ELM) classifier and extract the texture features. The experimental results of MSTAR database demonstrate the effectiveness of the proposed method.

     

  • [1]
    丁军, 刘宏伟, 王英华. 基于非负稀疏表示的SAR图像目标识别方法[J]. 电子与信息学报, 2014, 36(9): 2194-2200. Ding Jun, Liu Hong-wei, and Wang Ying-hua. SAR image target recognition based on non-negative sparse representation[J]. Journal of Electronics Information Technology, 2014, 36(9): 2194-2200.
    [2]
    梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9): 2144-2148. Liang Sheng-jie, Zhang Zhi-hua, Cui Li-lin, et al.. A reduced dimension method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9): 2144-2148.
    [3]
    周家锐, 纪震, 沈琳琳, 等. 基于Gabor小波与Memetic算法的人脸识别方法[J]. 电子学报, 2012, 40(4): 642-646. Zhou Jia-rui, Ji Zhen, Shen Lin-lin, et al.. Face recognition using Gabor wavelets and Memetic algorithm[J]. Acta Electronica Sinica, 2012, 40(4): 642-646.
    [4]
    高涛, 何明一, 戴玉超, 等. 多级LBP直方图序列特征的人脸识别[J]. 中国图象图形学报, 2009, 14(2): 202-207. Gao Tao, He Ming-yi, Dai Yu-chao, et al.. Face recognition using multi-level histogram sequence local binary pattern[J]. Journal of Image and Graphics, 2009, 14(2): 202-207.
    [5]
    Patel V, Nasraba N, and Chellappa R. Sparsity-motivated automatic target recognition[J]. Applied Optics, 2011, 50(10): 1425-1433.
    [6]
    Novak L M, Owirka G J, and Brower W S. Performance of 10-and 20-target MSE classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1279-1289.
    [7]
    Li W and Du Q. Gabor-Filtering based nearest regularized subspace for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1012-1022.
    [8]
    Ojala T, Pietikainen M, and Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
    [9]
    Lior W, Tal H, and Yaniv T. Descriptor based methods in the wild[C]. Real-Life Images Workshop at the European Conference on Computer Vision (ECCV), Marseille, France, 2008: 1-14.
    [10]
    张文博, 姬红兵. 融合极限学习机[J]. 电子与信息学报, 2013, 35(11): 2728-2732.
    [11]
    Zhang Wen-bo and Ji Hong-bing. Fusion of extreme learning machines[J]. Journal of Electronics Information Technology, 2013, 35(11): 2728-2732.
    [12]
    Zhou Y, Peng J, and Chen C. Extreme learning machine with composite kernels for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2351-2360.
    [13]
    Moving and Stationary Target Acquisition and Recognition (MSTAR) Public Dataset[OL]. https://www.sdms.afrl. af.mil/datasets/mstar/.
    [14]
    尹奎英, 金林, 李成, 等. 融合目标轮廓和阴影轮廓的SAR 图像目标识别[J]. 空军工程大学学报(自然科学版), 2011, 12(1): 24-28.
    [15]
    Yin Kui-ying, Jin Lin, Li Cheng, et al.. An SAR ATR based on fusion of target contour and shadow contour[J]. Journal of Air Force Engineer University (Natural Science Edition), 2011, 12(1): 24-28.
  • Relative Articles

    [1]CAO Jingyi, ZHANG Yang, YOU Ya’nan, WANG Yamin, YANG Feng, REN Weijia, LIU Jun. Target Recognition Method Based on Graph Structure Perception of Invariant Features for SAR Images[J]. Journal of Radars, 2025, 14(2): 366-388. doi: 10.12000/JR24125
    [2]LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001
    [3]CUI Zongyong, YANG Zhiyuan, JIANG Yang, CAO Zongjie, YANG Jianyu. Explainability of Deep Networks for SAR Target Recognition via Class Activation Mapping[J]. Journal of Radars, 2024, 13(2): 428-442. doi: 10.12000/JR23188
    [4]RUAN Hang, CUI Jiahao, MAO Xiuhua, REN Jianying, LUO Binyan, CAO Hang, LI Haifeng. A Survey of Adversarial Attacks on SAR Target Recognition: From Digital Domain to Physical Domain[J]. Journal of Radars, 2024, 13(6): 1298-1326. doi: 10.12000/JR24142
    [5]WAN Hao, LIANG Jing. HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks[J]. Journal of Radars. doi: 10.12000/JR24200
    [6]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [7]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [8]Yang Qi, Deng Bin, Wang Hongqiang, Qin Yuliang. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region[J]. Journal of Radars, 2018, 7(1): 22-45. doi: 10.12000/JR17087
    [9]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [10]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [11]Wen Gongjian, Zhu Guoqiang, Yin Hongcheng, Xing Mengdao, Yang Hu, Ma Conghui, Yan Hua, Ding Baiyuan, Zhong Jinrong. SAR ATR Based on 3D Parametric Electromagnetic Scattering Model[J]. Journal of Radars, 2017, 6(2): 115-135. doi: 10.12000/JR17034
    [12]Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. Journal of Radars, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [13]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [14]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [15]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [16]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [17]HAN Ping, WANG Huan. Synthetic Aperture Radar Target Feature Extraction and Recognition Based on Improved Sparsity Preserving Projections[J]. Journal of Radars, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [18]Zhang Zhi-long, Yang Wei-ping, Li Ji-cheng. Remote Sensing Image Feature Extracting Based Multiple Ant Colonies Cooperation[J]. Journal of Radars, 2014, 3(1): 92-100. doi: 10.3724/SP.J.1300.2014.13129
    [19]Zhang Jian-jun, Cao Jie, Wang Yuan-yuan. Gradient Algorithm on Stiefel Manifold and Application in Feature Extraction[J]. Journal of Radars, 2013, 2(3): 309-313. doi: 10.3724/SP.J.1300.2013.13048
    [20]Sun Zhi-jun, Xue Lei, Xu Yang-ming, Sun Zhi-yong. Shared Representation of SAR Target and Shadow Based on Multilayer Auto-encoder[J]. Journal of Radars, 2013, 2(2): 195-202. doi: 10.3724/SP.J.1300.2012.20085
  • Cited by

    Periodical cited type(21)

    1. 徐涛,耿德祥,曹建伟,田成富,王明明. 基于纹理特征和支持向量机的路基病害探地雷达图像识别方法. 工程地球物理学报. 2025(01): 65-73 .
    2. 符婷,陈思伟. SAR图像方向性上下文协方差矩阵构建方法及地物分类应用. 遥感学报. 2024(03): 730-746 .
    3. 胡卫杰,刘颖冰,马飞,张帆. 基于无损压缩和量化感知的SAR舰船检测网络边缘部署. 信号处理. 2024(09): 1674-1684 .
    4. 阮航,崔家豪,毛秀华,任建迎,罗镔延,曹航,李海峰. SAR目标识别对抗攻击综述:从数字域迈向物理域. 雷达学报. 2024(06): 1298-1326 . 本站查看
    5. 杨莹,朱卫纲,邱琳琳,李佳芯,朱霸坤. 基于迁移学习的有限SAR样本目标识别研究综述. 电光与控制. 2023(12): 6-11+37 .
    6. 张楚笛,唐涛,计科峰. SAR图像车辆目标多模态联合协同表示分类方法. 信号处理. 2021(05): 681-689 .
    7. 金啸宇,尹嫱,倪军,周勇胜,张帆,洪文. 一种基于场景合成和锚点约束的SAR目标检测网络. 南京信息工程大学学报(自然科学版). 2020(02): 210-215 .
    8. 胡伟,高博川,黄振航,李瑞瑞. 树形结构卷积神经网络优化的城区遥感图像语义分割. 中国图象图形学报. 2020(05): 1043-1052 .
    9. 李清,魏雪云. 基于并联卷积神经网络的SAR图像目标识别. 电波科学学报. 2020(03): 364-371 .
    10. Long SUN,Tao WU,Guangcai SUN,Dazheng FENG,Lieshu TONG,Mengdao XING. Object Detection Research of SAR Image Using Improved Faster RegionBased Convolutional Neural Network. Journal of Geodesy and Geoinformation Science. 2020(03): 18-28 .
    11. 王敬平,姜鑫,黄子君,周洁. 基于机器学习的SAR图像目标识别方法. 电子技术与软件工程. 2020(17): 126-127 .
    12. 王文飞. 基于改进的凸能量模型与多特征融合的纹理图像分割算法研究. 大庆师范学院学报. 2020(06): 99-106 .
    13. 崔福彬,张茜,雷俞承志,尹伟石. 基于深度学习的SAR图像目标识别算法. 长春理工大学学报(自然科学版). 2019(04): 33-36 .
    14. 白玉,姜东民,裴加军,张宁,白郁. 改进的ELU卷积神经网络在SAR图像舰船检测中的应用. 测绘通报. 2018(01): 125-128 .
    15. 许强,李伟,占荣辉,邹鲲. 一种改进的卷积神经网络SAR目标识别算法. 西安电子科技大学学报. 2018(05): 177-183 .
    16. 潘旭冉,杨帆,杨宜菩,潘国峰. 基于纹理方向和角点的居民地信息提取. 科学技术与工程. 2017(31): 120-127 .
    17. 康妙,计科峰,冷祥光,邢相薇,邹焕新. 基于栈式自编码器特征融合的SAR图像车辆目标识别. 雷达学报. 2017(02): 167-176 . 本站查看
    18. 薛婷婷,刘秀平,张凯兵,王珍,闫亚娣,闫焕营. 基于学习的Gabor滤波器多样式布匹瑕疵检测. 西安工程大学学报. 2017(06): 775-780 .
    19. 武光辉,童创明,李西敏,彭鹏. 逆合成孔径雷达目标成像识别优化仿真. 计算机仿真. 2016(06): 9-12+339 .
    20. 田壮壮,占荣辉,胡杰民,张军. 基于卷积神经网络的SAR图像目标识别研究.. 雷达学报. 2016(03): 320-325 . 本站查看
    21. 杜康宁,邓云凯,王宇,李宁. 基于多层神经网络的中分辨SAR图像时间序列建筑区域提取. 雷达学报. 2016(04): 410-418 . 本站查看

    Other cited types(56)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.8 %FULLTEXT: 13.8 %META: 73.1 %META: 73.1 %PDF: 13.1 %PDF: 13.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.2 %其他: 16.2 %其他: 1.2 %其他: 1.2 %Baden: 0.0 %Baden: 0.0 %Central District: 0.2 %Central District: 0.2 %China: 0.7 %China: 0.7 %Hanoi: 0.1 %Hanoi: 0.1 %Hungary: 0.2 %Hungary: 0.2 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Kao-sung: 0.0 %Kao-sung: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Mexico: 0.1 %Mexico: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Spain: 0.1 %Spain: 0.1 %Thailand: 0.1 %Thailand: 0.1 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.3 %United States: 0.3 %Wixom: 0.1 %Wixom: 0.1 %[]: 1.2 %[]: 1.2 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临沂: 0.0 %临沂: 0.0 %乌兰察布: 0.0 %乌兰察布: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.0 %兰州: 0.0 %内江: 0.0 %内江: 0.0 %加利福尼亚: 0.0 %加利福尼亚: 0.0 %包头: 0.0 %包头: 0.0 %北京: 10.7 %北京: 10.7 %北海: 0.1 %北海: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.9 %南京: 0.9 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %厦门: 0.2 %厦门: 0.2 %古吉拉特: 0.1 %古吉拉特: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %威海: 0.1 %威海: 0.1 %安科纳: 0.1 %安科纳: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.1 %宿迁: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %平凉: 0.1 %平凉: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.7 %广州: 0.7 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %徐州: 0.0 %徐州: 0.0 %德里久尔: 0.2 %德里久尔: 0.2 %意大利: 0.1 %意大利: 0.1 %成都: 0.5 %成都: 0.5 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %朔州: 0.0 %朔州: 0.0 %杭州: 1.5 %杭州: 1.5 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.1 %桂林: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.1 %沈阳: 0.1 %沙田: 0.0 %沙田: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.1 %济南: 0.1 %海得拉巴: 0.1 %海得拉巴: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.1 %漯河: 0.1 %漳州: 0.0 %漳州: 0.0 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %珠海: 0.1 %珠海: 0.1 %白银: 0.0 %白银: 0.0 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %科珀斯克里斯蒂: 0.0 %科珀斯克里斯蒂: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国加利福尼亚洛杉矶: 0.1 %美国加利福尼亚洛杉矶: 0.1 %芒廷维尤: 19.4 %芒廷维尤: 19.4 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %菏泽: 0.1 %菏泽: 0.1 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 27.7 %西宁: 27.7 %西安: 1.2 %西安: 1.2 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.2 %贵港: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 0.1 %运城: 0.1 %邯郸: 0.0 %邯郸: 0.0 %邵阳: 0.0 %邵阳: 0.0 %郑州: 1.3 %郑州: 1.3 %重庆: 0.2 %重庆: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 1.0 %长沙: 1.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.4 %青岛: 0.4 %首尔: 0.4 %首尔: 0.4 %黄冈: 0.1 %黄冈: 0.1 %黄山: 0.0 %黄山: 0.0 %黄石: 0.1 %黄石: 0.1 %其他其他BadenCentral DistrictChinaHanoiHungaryIndiaIran (ISLAMIC Republic Of)Kao-sungKennedy TownKorea Republic ofMexicoSeattleSpainThailandUnited KingdomUnited StatesWixom[]上海东莞中卫临沂乌兰察布佛山保定兰州内江加利福尼亚包头北京北海十堰南京南宁南昌厦门古吉拉特台北台州合肥呼和浩特哈尔滨商丘嘉兴大连天津威海安科纳宜宾宜春宣城宿迁巴音郭楞常州常德平凉平顶山广州库比蒂诺廊坊延安开封张家口张家口市徐州德里久尔意大利成都扬州新乡旧金山昆明晋城朔州杭州格兰特县桂林榆林武汉沈阳沙田洛杉矶济南海得拉巴淮南淮安深圳深圳市温州渭南湖州湘潭漯河漳州濮阳烟台焦作珠海白银石家庄福州科珀斯克里斯蒂秦皇岛纽约绍兴绵阳美国伊利诺斯芝加哥美国加利福尼亚洛杉矶芒廷维尤芝加哥苏州菏泽蚌埠衡水衡阳衢州西宁西安诺沃克贵港费利蒙运城邯郸邵阳郑州重庆长春长沙阳泉青岛首尔黄冈黄山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3430) PDF downloads(1954) Cited by(77)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint