Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
Citation: Bu Yuncheng, Wang Yu, Zhang Fubo, Ji Guangyu, Chen Longyong, Liang Xingdong. Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace[J]. Journal of Radars, 2018, 7(3): 335-345. doi: 10.12000/JR18007

Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace

DOI: 10.12000/JR18007
Funds:  The National Ministries Foundation
  • Received Date: 2018-01-25
  • Rev Recd Date: 2018-05-18
  • Publish Date: 2018-06-28
  • The array InSAR system obtains a three-dimensional image of an observed scene using a combination of pulse compression and synthetic and real aperture techniques. However, Antenna Phase Center (APC) errors can occur within a practical array InSAR system, which thus degrades the imaging quality in a height direction. The aim of this paper is to improve calibration problems occurring with APC errors. The effect of APC errors is analyzed, and a calibration method based on the orthogonal subspace principle is proposed that utilizes SAR Single Look Complex (SLC) to obtain the noise subspace through eigenvalue decomposition. The subspace orthogonal principle is then used to solve the APC positions of multiple channels simultaneously. In addition, a calibration scheme for the APC position is presented for application with an array InSAR system. The effectiveness of the proposed calibration method is verified using simulations and experimental results.

     

  • [1]
    张红, 江凯, 王超, 等. SAR层析技术的研究与应用[J]. 遥感技术与应用, 2010, 25(2): 282–287

    Zhang Hong, Jiang Kai, Wang Chao, et al. The current status of SAR tomography[J]. Remote Sensing Technology and Application, 2010, 25(2): 282–287
    [2]
    Zhang F B, Liang X D, Wu Y R, et al. 3D surface reconstruction of layover areas in continuous terrain for multi-baseline SAR interferometry using a curve model[J]. International Journal of Remote Sensing, 2015, 36(8): 2093–2112. DOI: 10.1080/01431161.2015.1030042
    [3]
    张福博, 梁兴东, 吴一戎. 一种基于地形驻点分割的多通道SAR三维重建方法[J]. 电子与信息学报, 2015, 37(10): 2287–2293. DOI: 10.11999/JEIT150244

    Zhang Fu-bo, Liang Xing-dong, and Wu Yi-rong. 3-D reconstruction for multi-channel SAR interferometry using terrain stagnation point based division[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2287–2293. DOI: 10.11999/JEIT150244
    [4]
    Zhu X X and Bamler R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. DOI: 10.1109/MSP.2014.2312098
    [5]
    Schmitt M, Shahzad M, and Zhu X X. Reconstruction of individual trees from multi-aspect TomoSAR data[J]. Remote Sensing of Environment, 2015, 165: 175–185. DOI: 10.1016/j.rse.2015.05.012
    [6]
    Tebaldini S and Ferro-Famil L. High resolution three-dimensional imaging of a snowpack from ground-based SAR data acquired at X and Ku band[C]. Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia, 2015: 77–80.
    [7]
    Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: 10.1109/36.868873
    [8]
    丁振宇, 谭维贤, 王彦平, 等. 基于波数域子孔径的机载三维SAR偏航角运动误差补偿[J]. 雷达学报, 2015, 4(4): 467–473. DOI: 10.12000/JR15016

    Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, et al. Yaw angle error compensation for airborne 3-D SAR based on wavenumber-domain subblock[J]. Journal of Radars, 2015, 4(4): 467–473. DOI: 10.12000/JR15016
    [9]
    Tebaldini S and Guarnieri A M. On the role of phase stability in SAR multibaseline applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2953–2966. DOI: 10.1109/TGRS.2010.2043738
    [10]
    朱海洋, 洪峻, 明峰. 相位中心偏差对机载阵列天线下视3D-SAR成像影响分析[J]. 电子与信息学报, 2012, 34(4): 910–916. DOI: 10.3724/SP.J.1146.2011.00776

    Zhu Hai-yang, Hong Jun, and Ming Feng. Analysis of impact of phase center variations in linear array antena downward-looking 3D-SAR imaging[J]. Journal of Electronics&Information Technology, 2012, 34(4): 910–916. DOI: 10.3724/SP.J.1146.2011.00776
    [11]
    朱海洋. 阵列下视3D-SAR相位中心定标方法研究[D]. [硕士论文], 中国科学院大学, 2012.

    Zhu Hai-yang. Study on phase center calibration methods of linear array downward-looking 3D-SAR[D]. [Master dissertation], University of Chinese Acedamy of Science, 2012.
    [12]
    韩阔业. 基于稀疏线阵的机载合成孔径雷达成像模型、方法与实验研究[D]. [博士论文], 中国科学院大学, 2015.

    Han Kuo-ye. Study on model, algorithm and experiment for airborne synthetic aperture radar imaging based on sparse linear array antennas[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2015.
    [13]
    Pardini M, Papathanassiou K, Bianco V, et al.. Phase calibration of multibaseline SAR data based on a minimum entropy criterion[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 5198–5201. DOI: 10.1109/IGARSS.2012.6352438.
    [14]
    Tebaldini S, Rocca F, d’Alessandro M M, et al. Phase calibration of airborne tomographic SAR data via phase center double localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1775–1792. DOI: 10.1109/TGRS.2015.2488358
    [15]
    Fornaro G, Lombardini F, and Serafino F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. DOI: 10.1109/TGRS.2005.843567
    [16]
    Urasawa F, Yamada H, Yamaguchi Y, et al.. Fundamental study on multi-baseline SAR tomography by Pi-SAR-L2[C]. Proceedings of the URSI Asia-Pacific Radio Science Conference, Seoul, South Korea, 2016: 514–515. DOI: 10.1109/URSIAP-RASC.2016.7601342.
    [17]
    柳祥乐. 多基线层析成像合成孔径雷达研究[D]. [博士论文], 中国科学院电子学研究所, 2007.

    Liu Xiang-le. Study on multibaseline tomography synthetic aperture radar[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2007.
    [18]
    赵逸超, 朱宇涛, 粟毅, 等. 用于线阵三维SAR成像的二维快速ESPRIT算法[J]. 雷达学报, 2015, 4(5): 591–599. DOI: 10.12000/JR15065

    Zhao Yi-chao, Zhu Yu-tao, Su Yi, et al. Two-dimensional fast ESPRIT algorithm for linear array SAR imaging[J]. Journal of Radars, 2015, 4(5): 591–599. DOI: 10.12000/JR15065
    [19]
    Zhu X X and Bamler R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. DOI: 10.1109/MSP.2014.2312098
    [20]
    Schmitt M and Stilla U. Compressive sensing based layover separation in airborne single-pass multi-baseline InSAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 313–317. DOI: 10.1109/LGRS.2012.2204230
    [21]
    李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020

    Li Hang, Liang Xing-dong, Zhang Fu-bo, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
    [22]
    Stoica P and Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1989, 37(5): 720–741. DOI: 10.1109/29.17564
    [23]
    张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015.

    Zhang Fu-bo. Research on signal processing of 3-D reconstruction in linear array Synthetic Aperture Radar interferometry[D]. [Ph.D. dissertation], University of Chinese Acedamy of Science, 2015.
    [24]
    Freeman A. SAR calibration: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(6): 1107–1121. DOI: 10.1109/36.193786
    [25]
    焦培南, 张忠治. 雷达环境与电波传播特性[M]. 北京: 电子工业出版社, 2007.

    Jiao Pei-nan and Zhang Zhong-zhi. Radio Environment and Radio Wave Propagation Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2007.
  • Relative Articles

    [1]WANG Bohong, SHEN Biao, MU Wenxing, LIU Tao. Research on Super-resolution Methods for Radar Targets Based on Bat-inspired Spectrogram Correlation and Transformation Models[J]. Journal of Radars, 2025, 14(2): 293-308. doi: 10.12000/JR24239
    [2]GUO Zhongyi, WANG Yanzhe, WANG Yunlai, GUO Kai. Research Advances on the Rotational Doppler Effect of Vortex Electromagnetic Waves[J]. Journal of Radars, 2021, 10(5): 725-739. doi: 10.12000/JR21109
    [3]PEI Jiazheng, HUANG Yong, CHEN Baoxin, GUAN Jian, CAI Mi, CHEN Xiaolong. Long Time Coherent Integration Method Based on Combining Pulse Compression and Radon-Fourier Transform[J]. Journal of Radars, 2021, 10(6): 956-969. doi: 10.12000/JR21068
    [4]WEI Wei, ZHU Daiyin, WU Di. Wavenumber Domain Algorithm Based on the Principle of Chirp Scaling for SAR Imaging[J]. Journal of Radars, 2020, 9(2): 354-362. doi: 10.12000/JR19112
    [5]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [6]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [7]Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027
    [8]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [9]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [10]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [11]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [12]Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013
    [13]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [14]Tian Rui-qi, Bao Qing-long, Wang Ding-he, Chen Zeng-ping. An Algorithm for Target Parameter Estimation Based on Fractional Fourier and Keystone Transforms[J]. Journal of Radars, 2014, 3(5): 511-517. doi: 10.3724/SP.J.1300.2014.14058
    [15]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [16]Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036
    [17]Guan Xin, Zhong Li-hua, Hu Dong-hui, Ding Chi-biao. A Compensation Algorithm Based on RSPWVD-Hough Transform for Doppler Expansion in Passive Radar[J]. Journal of Radars, 2013, 2(4): 430-438. doi: 10.3724/SP.J.1300.2013.13073
    [18]Deng Dong-hu, Zhang Qun, Luo Ying, Li Song, Zhu Ren-Fei. Resolution and Micro-Doppler Effect in Bi-ISAR System (in English)[J]. Journal of Radars, 2013, 2(2): 152-167. doi: 10.3724/SP.J.1300.2013.13039
    [19]Zheng Jin, You Hong-jian. Change Detection with SAR Images Based on Radon Transform and Jeffrey Divergence[J]. Journal of Radars, 2012, 1(2): 182-189. doi: 10.3724/SP.J.1300.2012.10068
    [20]Yu Bin-bin, Liu Chang, Wang Yan-fei. A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR[J]. Journal of Radars, 2012, 1(1): 69-75. doi: 10.3724/SP.J.1300.2012.20005
  • Cited by

    Periodical cited type(6)

    1. 王纪平,刘衍琦,邓钱钰,郭淑婷,毛新华. 基于PAST的毫米波雷达MIMO阵列幅相误差校正算法. 信号处理. 2024(09): 1633-1647 .
    2. 宁宝俊. 毫米波雷达在斜拉桥索力监测中的应用. 西部交通科技. 2024(07): 157-160 .
    3. 张春杰,陈奇,赵佳琦. 基于注意力机制CNN-LSTM的毫米波雷达点云特征数据预测生成. 电讯技术. 2024(11): 1718-1725 .
    4. 耿同乐. 电流反馈在毫米波雷达信号处理中的应用. 集成电路应用. 2024(11): 26-27 .
    5. 于丹阳,杜磊. 一种基于快速迭代自适应算法的毫米波雷达波达角高精度测量方法. 计量科学与技术. 2024(11): 3-9+21 .
    6. 孙航,张路,季国田. 智能网联汽车标准体系及重点标准研究与展望. 汽车安全与节能学报. 2024(06): 795-812 .

    Other cited types(29)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 59.9 %META: 59.9 %PDF: 9.3 %PDF: 9.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 2.2 %其他: 2.2 %Central District: 0.0 %Central District: 0.0 %China: 0.3 %China: 0.3 %Herndon: 0.0 %Herndon: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Malvern: 0.0 %Malvern: 0.0 %North Point: 0.1 %North Point: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.4 %[]: 0.4 %三亚: 0.1 %三亚: 0.1 %三明: 0.1 %三明: 0.1 %上海: 3.0 %上海: 3.0 %东京: 0.2 %东京: 0.2 %东京都: 0.0 %东京都: 0.0 %东莞: 0.3 %东莞: 0.3 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %九江: 0.0 %九江: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 10.5 %北京: 10.5 %北海: 0.0 %北海: 0.0 %十堰: 0.0 %十堰: 0.0 %华沙: 0.1 %华沙: 0.1 %南京: 2.1 %南京: 2.1 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.9 %台北: 0.9 %台州: 0.0 %台州: 0.0 %合肥: 0.5 %合肥: 0.5 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大克罗伊茨: 0.6 %大克罗伊茨: 0.6 %大连: 0.2 %大连: 0.2 %天津: 1.2 %天津: 1.2 %太原: 0.4 %太原: 0.4 %威海: 0.4 %威海: 0.4 %宁波: 0.1 %宁波: 0.1 %安山: 0.1 %安山: 0.1 %安康: 0.3 %安康: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.2 %宣城: 0.2 %宿州: 0.0 %宿州: 0.0 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广元: 0.0 %广元: 0.0 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开普敦: 0.1 %开普敦: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 1.8 %成都: 1.8 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.0 %抚顺: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %昌迪加尔: 0.0 %昌迪加尔: 0.0 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杜塞尔多夫: 0.0 %杜塞尔多夫: 0.0 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %格林菲尔德: 0.0 %格林菲尔德: 0.0 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %榆林: 0.3 %榆林: 0.3 %武汉: 2.8 %武汉: 2.8 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河内: 0.1 %河内: 0.1 %泉州: 0.0 %泉州: 0.0 %法兰克福: 0.1 %法兰克福: 0.1 %泰州: 0.0 %泰州: 0.0 %泰米尔纳德: 0.3 %泰米尔纳德: 0.3 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %海口: 0.0 %海口: 0.0 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 1.7 %深圳: 1.7 %清远: 0.0 %清远: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.8 %漯河: 0.8 %烟台: 0.3 %烟台: 0.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.1 %纳什维尔: 0.1 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.5 %绍兴: 0.5 %绵阳: 0.2 %绵阳: 0.2 %胡志明: 0.1 %胡志明: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 32.6 %芒廷维尤: 32.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蒙彼利埃: 0.0 %蒙彼利埃: 0.0 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 9.3 %西宁: 9.3 %西安: 2.1 %西安: 2.1 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.1 %赣州: 0.1 %赤峰: 0.0 %赤峰: 0.0 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %遵义: 0.1 %遵义: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 1.1 %长沙: 1.1 %随州: 0.0 %随州: 0.0 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.4 %青岛: 0.4 %韦斯特罗斯: 0.0 %韦斯特罗斯: 0.0 %韦科: 0.1 %韦科: 0.1 %首尔: 0.0 %首尔: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.0 %驻马店: 0.0 %黄冈: 0.1 %黄冈: 0.1 %黄山: 0.0 %黄山: 0.0 %黄石: 0.3 %黄石: 0.3 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaHerndonKao-sungMalvernNorth PointSan LorenzoSeattle[]三亚三明上海东京东京都东莞中卫临汾临沂丹东九江伊利诺伊州伦敦佛山兰州兰辛凤凰城北京北海十堰华沙南京南充南昌南通卡拉奇厦门台北台州合肥吉安呼和浩特咸阳哈密哈尔滨哥伦布唐山嘉兴大克罗伊茨大连天津太原威海宁波安山安康宝鸡宣城宿州岳阳常州常德广元广州库比蒂诺廊坊开普敦张家口张家界徐州德里怀化成都扬州抚顺揭阳新乡无锡昆明昌迪加尔晋城朝阳杜塞尔多夫杭州枣庄格兰特县格林菲尔德桂林梅州榆林武汉汕头沈阳沧州河内泉州法兰克福泰州泰米尔纳德泸州洛阳济南海口淄博淮南淮安深圳清远温州渭南湖州滁州漯河烟台珠海石家庄秦皇岛纳什维尔纽约绍兴绵阳胡志明舟山芒廷维尤芝加哥苏州莫斯科葫芦岛蒙彼利埃衡阳衢州西宁西安许昌诺沃克贵阳赣州赤峰赫尔辛基达州运城遵义邢台邯郸郑州鄂州重庆镇江长春长沙随州雷德蒙德青岛韦斯特罗斯韦科首尔首尔特别香港香港特别行政区马鞍山驻马店黄冈黄山黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3242) PDF downloads(271) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint