LIU Tao, YANG Ziyuan, JIANG Yanni, et al. Review of ship detection in polarimetric synthetic aperture imagery[J].Journal of Radars, 2021, 10(1): 1–19. doi: 10.12000/JR20155
Citation: ZHOU Ming, MA Liang, WANG Ning, et al. Land-sea separation and sea surface zoning algorithms for sea surface target[J]. Journal of Radars, 2019, 8(3): 366–372. doi: 10.12000/JR19036

Land-sea Separation and Sea Surface Zoning Algorithms for Sea Surface Target

DOI: 10.12000/JR19036
Funds:  The National Ministries Foundation
More Information
  • Corresponding author: ZHOU Ming, mikecn@foxmail.com
  • Received Date: 2019-03-01
  • Rev Recd Date: 2019-06-10
  • Available Online: 2019-06-24
  • Publish Date: 2019-06-01
  • Adaptive detection can effectively improve the detection performance of marine surveillance radars; however, the islands or lands introduce discrete or flaky strong clutter, which may result in wrong covariance matrix estimation. Meanwhile, the complexity of the sea clutter complicates the use of a single model to describe the whole sea clutter. To solve the problem of serious degradation of clutter suppression performance when non-uniform samples participate in covariance matrix estimation and inaccuracy of sea clutter modeling, a land-sea separation and sea surface zoning algorithms are proposed for sea surface target detection. First, the land clutter and sea clutter are distinguished according to the characteristics that the phases of land echo sequences are strongly correlated while the phases of ocean echo sequences are random. Second, the sea surface is zoned according to the rubbing angle; further, the optimal distribution suited for each sea clutter zone is fitted and the appropriate adaptive detection method is selected according to the clutter distribution. Finally, the proposed algorithm is validated based on the measured data of an S-band radar. The results show that the proposed algorithm can effectively improve the detection performance of sea surface targets compared with the traditional detection algorithm.

     

  • [1]
    何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [2]
    刘思彤, 程红, 孙文邦, 等. 面向海上目标的海陆分离方法研究[J]. 电子设计工程, 2014, 22(15): 96–100. doi: 10.3969/j.issn.1674-6236.2014.15.031

    LIU Sitong, CHENG Hong, SUN Wenbang, et al. Studies of sea-land segment methods oriented to targets on the sea[J]. Electronic Design Engineering, 2014, 22(15): 96–100. doi: 10.3969/j.issn.1674-6236.2014.15.031
    [3]
    KALKAN K, BAYRAM B, MAKTAV D, et al. Comparison of support vector machine and object based classification methods for coastline detection[J]. International Society for Photogrammetry and Remote Sensing, 2013, XL-7/W2: 125–172.
    [4]
    NIEDERMEIER A, ROMANEESSEN E, and LEHNER S. Detection of coastlines in SAR images using wavelet methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2270–2281. doi: 10.1109/36.868884
    [5]
    LIU Chun, YANG Jian, YIN Junjun, et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4908–4920. doi: 10.1109/JSTARS.2016.2613279
    [6]
    LEE J S, JURKEVICH L, DEWAELE P, et al. Speckle filtering of synthetic aperture radar images: A review[J]. Remote Sensing Reviews, 1994, 8(4): 313–340. doi: 10.1080/02757259409532206
    [7]
    BO G, DELLEPIANE S, DE LAURENTIIS R. Semiautomatic coastline detection in remotely sensed images[C]. Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2000.
    [8]
    赵巨波, 符燕, 耿文东. 海杂波统计特性分析[J]. 现代雷达, 2005, 27(11): 4–6. doi: 10.3969/j.issn.1004-7859.2005.11.002

    ZHAO Jubo, FU Yan, and GENG Wendong. Analysis of sea clutter statistical characteristics[J]. Modern Radar, 2005, 27(11): 4–6. doi: 10.3969/j.issn.1004-7859.2005.11.002
    [9]
    丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [10]
    KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [11]
    ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [12]
    CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910
    [13]
    CONTE E, LOPS M, and RICCI G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. doi: 10.1109/7.722671
    [14]
    CONTE E, DE MAIO A, and RICCI G. Covariance matrix estimation for adaptive CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415–426. doi: 10.1109/TAES.2002.1008976
    [15]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [3]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [4]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [5]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [6]DENG Yunkai, YU Weidong, ZHANG Heng, WANG Wei, LIU Dacheng, WANG Robert. Forthcoming Spaceborne SAR Development[J]. Journal of Radars, 2020, 9(1): 1-33. doi: 10.12000/JR20008
    [7]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [8]LENG Xiangguang, JI Kefeng, XIONG Boli, KUANG Gangyao. Statistical Modeling Methods of Single-channel Complex-valued SAR Images for Ship Detection[J]. Journal of Radars, 2020, 9(3): 477-496. doi: 10.12000/JR20070
    [9]CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041
    [10]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [11]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [12]Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033
    [13]Zou Huanxin, Luo Tiancheng, Zhang Yue, Zhou Shilin. Combined Conditional Random Fields Model for Supervised PolSAR Images Classification[J]. Journal of Radars, 2017, 6(5): 541-553. doi: 10.12000/JR16109
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [19]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Cited by

    Periodical cited type(15)

    1. 师俞晨. 基于遥感影像水下目标尾迹探测综述. 现代防御技术. 2024(01): 83-91 .
    2. 李煜,杨静飞,张鸿生,李刚,陈杰. 极化合成孔径雷达遥感地物分类研究进展. 遥感学报. 2024(08): 1835-1853 .
    3. 周慧,朱虹,陈澎. 基于可变形的多尺度自注意力特征融合SAR影像舰船识别. 大连海事大学学报. 2024(04): 110-118 .
    4. 林晓晶,肖鹏浩,何良,王海鹏. 基于极化神经网络的雷达舰船检测识别方法. 上海航天(中英文). 2023(01): 53-60 .
    5. 邢世其,全斯农,范晖,王威,黄大通,李永祯,王雪松. 联合数学规划策略和精细极化分解的极化SAR舰船目标检测. 中国科学:信息科学. 2023(03): 585-605 .
    6. 向诚,颜世杰,桂玲. 不平衡SAR图像舰船目标识别模型. 舰船科学技术. 2023(05): 174-177 .
    7. 曹运运,杨子渊,刘维建,刘涛. 雷达极化对角加载检测器的最优权重算法. 雷达科学与技术. 2023(02): 222-230 .
    8. 罗嘉豪,殷君君,杨健. 基于超像素与稀疏重构显著性的极化SAR舰船检测. 工程科学学报. 2023(10): 1684-1692 .
    9. 李郝亮,陈思伟. 海面角反射体电磁散射特性与雷达鉴别研究进展与展望. 雷达学报. 2023(04): 738-761 . 本站查看
    10. 王春华,王方超. 基于改进阈值函数的SAR图像小波去噪方法. 微电子学与计算机. 2022(05): 39-44 .
    11. 王少博,张成,苏迪,冀瑞静. 基于改进YOLOv3和核相关滤波算法的旋转弹目标探测算法. 兵工学报. 2022(05): 1032-1045 .
    12. 王志鹤,行坤,崔宁,喻忠军. 一种基于Radon变换和尾迹模型的尾迹检测算法. 电子设计工程. 2022(12): 1-6 .
    13. 任吉宏,刘畅. 基于自适应超像素的少样本极化SAR图像特征增强方法研究. 电子技术应用. 2022(10): 144-149 .
    14. 张阳,刘小芳,周鹏成. 改进Faster R-CNN的SAR图像船舶检测技术. 无线电工程. 2022(12): 2280-2287 .
    15. 常佳慧,赵建辉,李宁. 一种改进的2P-CFAR SAR舰船检测方法. 国外电子测量技术. 2021(11): 7-12 .

    Other cited types(28)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.9 %FULLTEXT: 26.9 %META: 63.3 %META: 63.3 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 0.9 %其他: 0.9 %Absecon: 0.0 %Absecon: 0.0 %Arlington: 0.0 %Arlington: 0.0 %Australia: 0.0 %Australia: 0.0 %Buford: 0.0 %Buford: 0.0 %Canada: 0.0 %Canada: 0.0 %Central District: 0.2 %Central District: 0.2 %China: 1.9 %China: 1.9 %European Union: 0.0 %European Union: 0.0 %Falls Church: 0.0 %Falls Church: 0.0 %France: 0.1 %France: 0.1 %Germany: 0.1 %Germany: 0.1 %Halfweg: 0.3 %Halfweg: 0.3 %Hanoi: 0.3 %Hanoi: 0.3 %Hong Kong, China: 0.0 %Hong Kong, China: 0.0 %India: 0.0 %India: 0.0 %Israel: 0.0 %Israel: 0.0 %Japan: 0.0 %Japan: 0.0 %Korea Republic of: 0.0 %Korea Republic of: 0.0 %Luxembourg: 0.0 %Luxembourg: 0.0 %Malvern: 0.0 %Malvern: 0.0 %Nahant: 0.0 %Nahant: 0.0 %Portugal: 0.0 %Portugal: 0.0 %Rochester: 0.0 %Rochester: 0.0 %Russian Federation: 0.0 %Russian Federation: 0.0 %Salisbury: 0.0 %Salisbury: 0.0 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %Sant'Anastasia: 0.1 %Sant'Anastasia: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Serbia: 0.0 %Serbia: 0.0 %Singapore: 0.0 %Singapore: 0.0 %South Africa: 0.0 %South Africa: 0.0 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.3 %United States: 0.3 %Viet Nam: 0.0 %Viet Nam: 0.0 %Vleuten: 0.0 %Vleuten: 0.0 %Yozgat: 0.0 %Yozgat: 0.0 %[]: 0.5 %[]: 0.5 %三亚: 0.1 %三亚: 0.1 %三明: 0.0 %三明: 0.0 %三门峡: 0.0 %三门峡: 0.0 %上海: 3.2 %上海: 3.2 %上饶: 0.0 %上饶: 0.0 %东京: 0.1 %东京: 0.1 %东京都: 0.0 %东京都: 0.0 %东莞: 0.6 %东莞: 0.6 %中卫: 0.1 %中卫: 0.1 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %乐山: 0.0 %乐山: 0.0 %九江: 0.0 %九江: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %伊斯坦布尔: 0.0 %伊斯坦布尔: 0.0 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.2 %保定: 0.2 %信阳: 0.0 %信阳: 0.0 %儋州: 0.0 %儋州: 0.0 %六安: 0.0 %六安: 0.0 %六盘水: 0.0 %六盘水: 0.0 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚: 0.0 %加利福尼亚: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.1 %包头: 0.1 %北京: 12.6 %北京: 12.6 %北海: 0.0 %北海: 0.0 %南京: 1.9 %南京: 1.9 %南京市江宁区: 0.0 %南京市江宁区: 0.0 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.3 %南昌: 0.3 %南阳: 0.1 %南阳: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.9 %合肥: 0.9 %吉林: 0.0 %吉林: 0.0 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸宁: 0.1 %咸宁: 0.1 %咸阳: 0.1 %咸阳: 0.1 %咸阳市淳化县: 0.0 %咸阳市淳化县: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %商洛: 0.0 %商洛: 0.0 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %墨尔本: 0.0 %墨尔本: 0.0 %多伦多: 0.0 %多伦多: 0.0 %大同: 0.0 %大同: 0.0 %大庆: 0.0 %大庆: 0.0 %大庆市龙凤区: 0.0 %大庆市龙凤区: 0.0 %大连: 0.4 %大连: 0.4 %大连市甘井子区: 0.0 %大连市甘井子区: 0.0 %天津: 1.0 %天津: 1.0 %太原: 0.2 %太原: 0.2 %奥斯陆: 0.0 %奥斯陆: 0.0 %威海: 0.2 %威海: 0.2 %娄底: 0.1 %娄底: 0.1 %孝感: 0.0 %孝感: 0.0 %宁波: 0.1 %宁波: 0.1 %安山: 0.0 %安山: 0.0 %安康: 0.1 %安康: 0.1 %宜宾: 0.0 %宜宾: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.1 %宿迁: 0.1 %密蘇里城: 0.0 %密蘇里城: 0.0 %岳阳: 0.0 %岳阳: 0.0 %巴中: 0.0 %巴中: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴黎: 0.0 %巴黎: 0.0 %布兰普顿: 0.0 %布兰普顿: 0.0 %布里斯班: 0.0 %布里斯班: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %平定: 0.0 %平定: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广岛县: 0.0 %广岛县: 0.0 %广州: 0.6 %广州: 0.6 %广州市天河区: 0.0 %广州市天河区: 0.0 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.0 %廊坊: 0.0 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %弗里蒙特: 0.0 %弗里蒙特: 0.0 %张家口: 0.4 %张家口: 0.4 %张家界: 0.1 %张家界: 0.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %德罕: 0.1 %德罕: 0.1 %德阳: 0.0 %德阳: 0.0 %德黑兰: 0.0 %德黑兰: 0.0 %忻州: 0.0 %忻州: 0.0 %怀化: 0.0 %怀化: 0.0 %悉尼: 0.0 %悉尼: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 2.2 %成都: 2.2 %成都市郫都区: 0.0 %成都市郫都区: 0.0 %扬州: 0.1 %扬州: 0.1 %抚州: 0.0 %抚州: 0.0 %拉斯维加斯: 0.0 %拉斯维加斯: 0.0 %拉贾斯坦邦: 0.0 %拉贾斯坦邦: 0.0 %攀枝花: 0.0 %攀枝花: 0.0 %新乡: 0.2 %新乡: 0.2 %无锡: 0.2 %无锡: 0.2 %旧金山: 0.0 %旧金山: 0.0 %旺角: 0.0 %旺角: 0.0 %昆明: 1.0 %昆明: 1.0 %昭通: 0.0 %昭通: 0.0 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %曼彻斯特: 0.0 %曼彻斯特: 0.0 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.0 %本溪: 0.0 %杭州: 1.0 %杭州: 1.0 %枣庄: 0.1 %枣庄: 0.1 %柳州: 0.0 %柳州: 0.0 %株洲: 0.0 %株洲: 0.0 %桂林: 0.1 %桂林: 0.1 %梅登黑德: 0.0 %梅登黑德: 0.0 %榆林: 0.0 %榆林: 0.0 %武威: 0.1 %武威: 0.1 %武汉: 3.3 %武汉: 3.3 %武汉市江汉区: 0.0 %武汉市江汉区: 0.0 %武汉市硚口区: 0.0 %武汉市硚口区: 0.0 %水原: 0.0 %水原: 0.0 %水牛城: 0.0 %水牛城: 0.0 %永州市宁远县: 0.0 %永州市宁远县: 0.0 %汉中: 0.0 %汉中: 0.0 %汕头: 0.1 %汕头: 0.1 %江门: 0.0 %江门: 0.0 %池州: 0.0 %池州: 0.0 %沈阳: 0.4 %沈阳: 0.4 %沧州: 0.0 %沧州: 0.0 %河内: 0.1 %河内: 0.1 %河源: 0.0 %河源: 0.0 %泉州: 0.0 %泉州: 0.0 %泰州: 0.1 %泰州: 0.1 %泰米尔纳德: 0.0 %泰米尔纳德: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.8 %济南: 0.8 %济宁: 0.1 %济宁: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.0 %淄博: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %渥太华: 0.0 %渥太华: 0.0 %渭南: 0.2 %渭南: 0.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %湘西: 0.0 %湘西: 0.0 %湛江: 0.1 %湛江: 0.1 %滁州: 0.0 %滁州: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %潜江: 0.0 %潜江: 0.0 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.2 %烟台: 0.2 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.1 %珠海: 0.1 %瑟普赖斯: 0.0 %瑟普赖斯: 0.0 %白山: 0.0 %白山: 0.0 %白银: 0.0 %白银: 0.0 %百色: 0.0 %百色: 0.0 %益阳: 0.0 %益阳: 0.0 %盐城: 0.0 %盐城: 0.0 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绥化: 0.0 %绥化: 0.0 %绵阳: 0.0 %绵阳: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %聊城: 0.0 %聊城: 0.0 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.6 %苏州: 0.6 %苏瀑: 0.0 %苏瀑: 0.0 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西孟加拉: 0.2 %西孟加拉: 0.2 %西宁: 16.3 %西宁: 16.3 %西安: 4.3 %西安: 4.3 %西安市长安区: 0.0 %西安市长安区: 0.0 %西雅图: 0.0 %西雅图: 0.0 %诺伊达: 0.0 %诺伊达: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %资阳: 0.0 %资阳: 0.0 %赣州: 0.1 %赣州: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.0 %连云港: 0.0 %遂宁: 0.0 %遂宁: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %鄂州: 0.1 %鄂州: 0.1 %酒泉: 0.0 %酒泉: 0.0 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.0 %银川: 0.0 %锡林郭勒盟: 0.0 %锡林郭勒盟: 0.0 %锦州: 0.0 %锦州: 0.0 %镇江: 0.1 %镇江: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 2.8 %长沙: 2.8 %长治: 0.0 %长治: 0.0 %阜新: 0.0 %阜新: 0.0 %阿什本: 0.1 %阿什本: 0.1 %阿布奎基: 0.1 %阿布奎基: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.0 %鞍山: 0.0 %韩国釜山: 0.0 %韩国釜山: 0.0 %首尔: 0.0 %首尔: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马尼拉: 0.0 %马尼拉: 0.0 %马湾: 0.0 %马湾: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %黔南: 0.1 %黔南: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他AbseconArlingtonAustraliaBufordCanadaCentral DistrictChinaEuropean UnionFalls ChurchFranceGermanyHalfwegHanoiHong Kong, ChinaIndiaIsraelJapanKorea Republic ofLuxembourgMalvernNahantPortugalRochesterRussian FederationSalisburySan LorenzoSant'AnastasiaSeattleSerbiaSingaporeSouth AfricaTaichungTaiwan, ChinaUnited KingdomUnited StatesViet NamVleutenYozgat[]三亚三明三门峡上海上饶东京东京都东莞中卫临沂丹东乌鲁木齐乐山九江亚特兰大伊斯坦布尔伦敦佛山佳木斯保定信阳儋州六安六盘水兰州兰辛加利福尼亚加利福尼亚州包头北京北海南京南京市江宁区南充南宁南平南昌南阳厦门台北台州合肥吉林周口呼和浩特咸宁咸阳咸阳市淳化县哈尔滨唐山商丘商洛喀什嘉兴圣彼得堡墨尔本多伦多大同大庆大庆市龙凤区大连大连市甘井子区天津太原奥斯陆威海娄底孝感宁波安山安康宜宾宜春宝鸡宣城宿迁密蘇里城岳阳巴中巴音郭楞巴音郭楞蒙古自治州巴黎布兰普顿布里斯班常州常德平定平顶山广岛县广州广州市天河区库比蒂诺廊坊延安开封弗里蒙特张家口张家界徐州德州德罕德阳德黑兰忻州怀化悉尼惠州成都成都市郫都区扬州抚州拉斯维加斯拉贾斯坦邦攀枝花新乡无锡旧金山旺角昆明昭通晋中晋城曼彻斯特朝阳本溪杭州枣庄柳州株洲桂林梅登黑德榆林武威武汉武汉市江汉区武汉市硚口区水原水牛城永州市宁远县汉中汕头江门池州沈阳沧州河内河源泉州泰州泰米尔纳德洛阳济南济宁海口淄博淮南淮安深圳渥太华渭南湖州湘潭湘西湛江滁州滨州漯河潍坊潜江濮阳烟台焦作玉林珠海瑟普赖斯白山白银百色益阳盐城盘锦石家庄福州秦皇岛纽约绍兴绥化绵阳美国伊利诺斯芝加哥聊城舟山芒廷维尤芜湖芝加哥苏州苏瀑荆州莫斯科葫芦岛蚌埠衡水衡阳衢州襄阳西孟加拉西宁西安西安市长安区西雅图诺伊达诺沃克贵港贵阳资阳赣州达州运城连云港遂宁邢台邯郸郑州鄂州酒泉重庆金华铁岭银川锡林郭勒盟锦州镇江长春长沙长治阜新阿什本阿布奎基青岛鞍山韩国釜山首尔首尔特别香港香港特别行政区马尼拉马湾马鞍山驻马店黄冈黄石黔南齐齐哈尔龙岩1/2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2989) PDF downloads(242) Cited by(43)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint