Citation: | Li Hai, Liu Xin-long, Zhou Meng, Liu Wei-jian. Detection of Maneuvering Target Based on Modified AMF[J]. Journal of Radars, 2015, 4(5): 552-559. doi: 10.12000/JR15105 |
[1] |
Klemm R. Principles of Space-time Adaptive Processing[M]. London: The Institution of Electrical Engineers, 2002: 87-100.
|
[2] |
Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 19-35.
|
[3] |
Ward J. Space-time adaptive processing for airborne radar[R]. Technical Report 1015, MIT Lincoln Laboratory, 1994: 1-79.
|
[4] |
王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201-207.-Wang Y L, Liu W J, Xie W C, et al.. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201-207.
|
[5] |
Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127.
|
[6] |
Chen W S and Reed I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198-214.
|
[7] |
Robey F C, Fuhrmann D R, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.
|
[8] |
Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.
|
[9] |
Li X L, Cui G L, Yi W, et al.. Coherent integration for maneuvering target detection based on Radon-Lv's distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467-1471.
|
[10] |
Ru J F, Jilkov V P, Li X R, et al.. Detection of target maneuver onset[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 536-554.
|
[11] |
Zhu S Q, Liao G S, Yang D, et al.. A new method for radar high-speed maneuvering weak target detection and imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1175-1179.
|
[12] |
Chen X L, Huang Y, Liu N B, et al.. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815-833.
|
[13] |
Winters D W. Target motion and high range resolution profile generation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2140-2153.
|
[14] |
Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
|
[15] |
Gvensen G M, Candan C, Orguner U, et al.. On generalized eigenvector space for target detection in reduced dimensions[C]. Proceedings of the IEEE International Radar Conference, Arlington VA, USA, 2015: 1316-1321.
|
[16] |
Melvin W L. Space-time adaptive radar performance in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621-633.
|
[17] |
同亚龙, 王彤, 文才, 等. 一种稳健的机载非正侧视阵雷达杂波抑制方法[J]. 电子与信息学报, 2015, 37(5): 1044-1050.-Tong Y L, Wang T, Wen C, et al.. A robust clutter suppression method for airborne non-sidelooking radar[J]. Journal of Electronics Information Technology, 2015, 37(5): 1044-1050.
|
[18] |
Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401.
|
[19] |
Guerci J R and Bergin J S. Principal components, covariance matrix tapers, and the subspace leakage problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 152-162.
|
[20] |
Wu Y, Tang J, and Peng Y N. On the essence of knowledge-aided clutter covariance estimate and its convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 569-585.
|
[21] |
O'shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393.
|
[22] |
Reed I S, Gau Y L, and Truong T K. CFAR detection and estimation for STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 722-735.
|
[23] |
Mestre X. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimations[J]. IEEE Transactions on Information Theory, 2008, 54(11): 5113-5129.
|
[24] |
Wang Y L, Liu W J, Xie W C, et al.. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57: 082310.
|
[25] |
Guerci J R. Space-time Adaptive Processing for Radar[M]. London: Artech House, 2003: 51-72.
|
[26] |
Benaych Georges F and Nadakuditi R R. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[J]. Advances in Mathematics, 2011, 227(1): 494-521.
|
[27] |
Hiemstra J D. Robust implementations of the multistage wiener filter[D]. [Ph.D. dissertation], Virginia Polytechnic Institute and State University, 2003.
|
[28] |
Skolnik M I. Radar Handbook[M]. New York: McGraw-Hill, 1990.
|
[29] |
Gerlach K and Picciolo M L. Airborne/spacebased radar STAP using a structured covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 269-281.
|
[30] |
刘维建, 谢文冲, 王永良. 基于对角加载的自适应匹配滤波器和自适应相干估计器[J]. 系统工程与电子技术, 2013, 35(3): 463-468.Liu W J, Xie W C, and Wang Y L. AMF and ACE detectors based on diagonal loading[J]. Systems Engineering and Electronics, 2013, 35(3): 463-468.
|
[31] |
Gau Y L. CFAR detection algorithm for STAP airborne radar[D]. [Ph.D. dissertation], University of Southern California, 1996.
|