Volume 4 Issue 5
Nov.  2015
Turn off MathJax
Article Contents
Li Hai, Liu Xin-long, Zhou Meng, Liu Wei-jian. Detection of Maneuvering Target Based on Modified AMF[J]. Journal of Radars, 2015, 4(5): 552-559. doi: 10.12000/JR15105
Citation: Li Hai, Liu Xin-long, Zhou Meng, Liu Wei-jian. Detection of Maneuvering Target Based on Modified AMF[J]. Journal of Radars, 2015, 4(5): 552-559. doi: 10.12000/JR15105

Detection of Maneuvering Target Based on Modified AMF

DOI: 10.12000/JR15105
Funds:

The National Natural Science Foundation of China (61471365, 61231017, 61571442), National Universitys Basic Research Foundation of China (3122015B002), Foundation for Sky Young Scholars of Civil Aviation University of China

  • Received Date: 2015-09-18
  • Rev Recd Date: 2015-10-25
  • Publish Date: 2015-10-28
  • Owing to the Doppler frequency migration of the return signal of maneuvering targets and finite training samples, it is difficult to detect maneuvering targets by conventional Adaptive Matched Filter (AMF) detectors. To solve this problem, a new method is proposed. First, to minimize sample size impairments, the diagonal loading technique was adopted to decrease the degrees of freedom of the sample space. Second, the Doppler frequency migration was compensated by the estimated acceleration which was estimated by the cubic phase transform, so as to reduce the dimension of matched searching and degrade the heavy calculation load. Finally, accumulation detection was conducted. The simulation results suggest that the proposed method can efficiently detect maneuvering target in finite sample situations with simple computation and constant false alarm rate detection.

     

  • loading
  • [1]
    Klemm R. Principles of Space-time Adaptive Processing[M]. London: The Institution of Electrical Engineers, 2002: 87-100.
    [2]
    Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 19-35.
    [3]
    Ward J. Space-time adaptive processing for airborne radar[R]. Technical Report 1015, MIT Lincoln Laboratory, 1994: 1-79.
    [4]
    王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201-207.-Wang Y L, Liu W J, Xie W C, et al.. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201-207.
    [5]
    Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127.
    [6]
    Chen W S and Reed I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198-214.
    [7]
    Robey F C, Fuhrmann D R, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.
    [8]
    Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.
    [9]
    Li X L, Cui G L, Yi W, et al.. Coherent integration for maneuvering target detection based on Radon-Lv's distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467-1471.
    [10]
    Ru J F, Jilkov V P, Li X R, et al.. Detection of target maneuver onset[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 536-554.
    [11]
    Zhu S Q, Liao G S, Yang D, et al.. A new method for radar high-speed maneuvering weak target detection and imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1175-1179.
    [12]
    Chen X L, Huang Y, Liu N B, et al.. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815-833.
    [13]
    Winters D W. Target motion and high range resolution profile generation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2140-2153.
    [14]
    Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
    [15]
    Gvensen G M, Candan C, Orguner U, et al.. On generalized eigenvector space for target detection in reduced dimensions[C]. Proceedings of the IEEE International Radar Conference, Arlington VA, USA, 2015: 1316-1321.
    [16]
    Melvin W L. Space-time adaptive radar performance in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621-633.
    [17]
    同亚龙, 王彤, 文才, 等. 一种稳健的机载非正侧视阵雷达杂波抑制方法[J]. 电子与信息学报, 2015, 37(5): 1044-1050.-Tong Y L, Wang T, Wen C, et al.. A robust clutter suppression method for airborne non-sidelooking radar[J]. Journal of Electronics Information Technology, 2015, 37(5): 1044-1050.
    [18]
    Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401.
    [19]
    Guerci J R and Bergin J S. Principal components, covariance matrix tapers, and the subspace leakage problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 152-162.
    [20]
    Wu Y, Tang J, and Peng Y N. On the essence of knowledge-aided clutter covariance estimate and its convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 569-585.
    [21]
    O'shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393.
    [22]
    Reed I S, Gau Y L, and Truong T K. CFAR detection and estimation for STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 722-735.
    [23]
    Mestre X. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimations[J]. IEEE Transactions on Information Theory, 2008, 54(11): 5113-5129.
    [24]
    Wang Y L, Liu W J, Xie W C, et al.. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57: 082310.
    [25]
    Guerci J R. Space-time Adaptive Processing for Radar[M]. London: Artech House, 2003: 51-72.
    [26]
    Benaych Georges F and Nadakuditi R R. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[J]. Advances in Mathematics, 2011, 227(1): 494-521.
    [27]
    Hiemstra J D. Robust implementations of the multistage wiener filter[D]. [Ph.D. dissertation], Virginia Polytechnic Institute and State University, 2003.
    [28]
    Skolnik M I. Radar Handbook[M]. New York: McGraw-Hill, 1990.
    [29]
    Gerlach K and Picciolo M L. Airborne/spacebased radar STAP using a structured covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 269-281.
    [30]
    刘维建, 谢文冲, 王永良. 基于对角加载的自适应匹配滤波器和自适应相干估计器[J]. 系统工程与电子技术, 2013, 35(3): 463-468.Liu W J, Xie W C, and Wang Y L. AMF and ACE detectors based on diagonal loading[J]. Systems Engineering and Electronics, 2013, 35(3): 463-468.
    [31]
    Gau Y L. CFAR detection algorithm for STAP airborne radar[D]. [Ph.D. dissertation], University of Southern California, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3271) PDF downloads(1436) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint