YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178
Citation: HOU Qingsen, LI Guangzuo, XU Zhongqiu, et al. A ISAR imaging method for space targets based on fast estimation of joint motion parameters[J]. Journal of Radars, 2025, 14(2): 424–438. doi: 10.12000/JR24251

A ISAR Imaging Method for Space Targets Based on Fast Estimation of Joint Motion Parameters

DOI: 10.12000/JR24251 CSTR: 32380.14.JR24251
Funds:  Science and Disruptive Technology Program, AIRCAS (E3Z208010F)
More Information
  • Corresponding author: LI Guangzuo, ligz@aircas.ac.cn
  • Received Date: 2024-12-14
  • Rev Recd Date: 2025-02-17
  • Available Online: 2025-02-20
  • Publish Date: 2025-03-15
  • Inverse Synthetic Aperture Radar (ISAR) is an important tool for imaging and monitoring space targets. The large rotation angle of space targets can exacerbate the phenomenon of Migration Through Resolution Cells (MTRC), seriously affecting the ISAR imaging performance. For the fast estimation and compensation of echo phase errors caused by the motion of space targets, this paper proposes an ISAR space-target imaging method based on the rapid estimation of joint motion parameters. This method combines the advantages of the high efficiency of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm and the high compensation accuracy of the Polar Format Algorithm (PFA) algorithm. The proposed method formulates an image entropy minimization model considering the joint estimation of the translation and rotation parameters of the target. To reduce the possibility of optimization falling into local optima, the proposed method solves sub-steps, which comprise rough and fine estimations of the target motion parameters, using the BFGS optimization algorithm. The proposed method rapidly estimates target rotation parameters and performs quick MTRC compensation under large rotation angles. The simulation of point targets and imaging results of actual civil aircraft data show that compared with the Particle Swarm Optimization-Polar Format Algorithm (PSO-PFA) algorithm, the proposed method estimates motion parameters with a higher accuracy under low signal-to-noise ratio conditions. Further, the computational efficiency is improved by more than five times, which is significantly advantageous.

     

  • [1]
    ANGER S, JIROUSEK M, DILL S, et al. High-resolution inverse synthetic aperture radar imaging of satellites in space[J]. IET Radar, Sonar & Navigation, 2024, 18(4): 544–563. doi: 10.1049/rsn2.12505.
    [2]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 6–70.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Techniques[M]. Beijing: Publishing House of Electronics Industry, 2005: 6–70.
    [3]
    ANGER S, JIROUSEK M, Dill S, et al. Research on advanced space surveillance using the IoSiS radar system[C]. The 13th European Conference on Synthetic Aperture Radar, Online, Germany, 2021: 1–4.
    [4]
    田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060.

    TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060.
    [5]
    田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术[M]. 北京: 科学出版社, 2022: 1–18.

    TIAN Biao, LIU Yang, HU Pengjiang, et al. High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[M]. Beijing: Science Press, 2022: 1–18.
    [6]
    夏靖远, 杨志雄, 周治兴, 等. 一种基于元学习的稀疏孔径ISAR成像算法[J]. 雷达学报, 2023, 12(4): 849–859. doi: 10.12000/JR23121.

    XIA Jingyuan, YANG Zhixiong, ZHOU Zhixing, et al. A metalearning-based sparse aperture ISAR imaging method[J]. Journal of Radars, 2023, 12(4): 849–859. doi: 10.12000/JR23121.
    [7]
    李中余, 桂亮, 海宇, 等. 基于变分模态分解与优选的超高分辨ISAR成像微多普勒抑制方法[J]. 雷达学报(中英文), 2024, 13(4): 852–865. doi: 10.12000/JR24043.

    LI Zhongyu, GUI Liang, HAI Yu, et al. Ultrahigh-resolution ISAR micro-Doppler suppression methodology based on variational mode decomposition and mode optimization[J]. Journal of Radars, 2024, 13(4): 852–865. doi: 10.12000/JR24043.
    [8]
    XING Mengdao, WU Renbiao, LAN Jinqiao, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141–144. doi: 10.1109/LGRS.2004.824766.
    [9]
    KARAMANAVIS V, DIRKS H, FUHRMANN L, et al. Characterization of deorbiting satellites and space debris with radar[J]. Advances in Space Research, 2023, 72(8): 3269–3281. doi: 10.1016/j.asr.2023.07.033.
    [10]
    PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691.
    [11]
    LIPPS R and KERR D. Polar reformatting for ISAR imaging[C]. 1998 IEEE Radar Conference, RADARCON’98 Challenges in Radar Systems and Solutions, Dallas, USA, 1998: 275–280. doi: 10.1109/NRC.1998.678014.
    [12]
    HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized hough-HAF Transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436.
    [13]
    LI Xiaolong, CUI Guolong, YI Wei, et al. Range migration correction for maneuvering target based on generalized keystone transform[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 95–99. doi: 10.1109/RADAR.2015.7130977.
    [14]
    杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8(2): 215–223. doi: 10.12000/JR18120.

    YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120.
    [15]
    卢光跃, 保铮. ISAR成像中散射点越分辨单元走动校正算法[J]. 西安电子科技大学学报, 1999, 26(4): 487–492. doi: 10.3969/j.issn.1001-2400.1999.04.022.

    LU Guangyue and BAO Zheng. Analysis of the MTRC compensation algorithm in ISAR imaging[J]. Journal of Xidian University, 1999, 26(4): 487–492. doi: 10.3969/j.issn.1001-2400.1999.04.022.
    [16]
    GONG Rui, WANG Ling, and ZHU Daiyin. Three-dimensional high-resolution space-borne ISAR imaging with compact antenna configuration for large rotational angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7422–7435. doi: 10.1109/JSTARS.2024.3379584.
    [17]
    吴熙芃. W波段雷达高分辨ISAR目标的运动补偿[D]. [硕士论文], 西安电子科技大学, 2021: 43–57. doi: 10.27389/d.cnki.gxadu.2021.001254.

    WU Xipeng. Motion compensation for W-band radar’s high-resolution ISAR targets[D]. [Master dissertation], Xidian University, 2021: 43–57. doi: 10.27389/d.cnki.gxadu.2021.001254.
    [18]
    杜荣震. 基于多视角ISAR图像的空间目标在轨状态反演方法[D]. [博士论文], 西安电子科技大学, 2022: 27–44. doi: 10.27389/d.cnki.gxadu.2022.003472.

    DU Rongzhen. On-orbit state estimation methods of space targets utilizing multi-view ISAR images[D].[Ph.D. dissertation], Xidian University, 2022: 27–44. doi: 10.27389/d.cnki.gxadu.2022.003472.
    [19]
    LIU Yifei, YU Weidong, YANG Shenghui, et al. An effective space-borne ISAR high-resolution imaging approach for satellite on-orbit based on minimum entropy optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 4523–4537. doi: 10.1109/JSTARS.2024.3359264.
    [20]
    SHAO Shuai, LIU Hongwei, ZHANG Lei, et al. Ultrawideband ISAR imaging of maneuvering targets with joint high-order motion compensation and azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214621. doi: 10.1109/TGRS.2021.3113007.
    [21]
    WANG Jiadong, LI Yachao, SONG Ming, et al. Noise robust high-speed motion compensation for ISAR imaging based on parametric minimum entropy optimization[J]. Remote Sensing, 2022, 14(9): 2178. doi: 10.3390/rs14092178.
    [22]
    ZHU Daiyin, WANG Ling, TAO Qingnian, et al. ISAR range alignment by minimizing the entropy of the average range profile[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 6. doi: 10.1109/RADAR.2006.1631897.
    [23]
    ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562.
    [24]
    WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
    [25]
    LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442.
    [26]
    王盛利, 李士国, 倪晋麟, 等. 一种新的变换—匹配傅里叶变换[J]. 电子学报, 2001, 29(3): 403–405. doi: 10.3321/j.issn:0372-2112.2001.03.030.

    WANG Shengli, LI Shiguo, NI Jinlin, et al. A new transform—match fourier transform[J]. Acta Electronica Sinica, 2001, 29(3): 403–405. doi: 10.3321/j.issn:0372-2112.2001.03.030.
    [27]
    LI Yuanyuan, FU Yaowen, and ZHANG Wenpeng. Distributed ISAR subimage fusion of nonuniform rotating target based on matching fourier transform[J]. Sensors, 2018, 18(6): 1806. doi: 10.3390/s18061806.
    [28]
    RONG Jiajia, WANG Yong, and HAN Tao. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8681–8693. doi: 10.1109/jsen.2019.2923447.
    [29]
    CHEN Chen, XU Zhiyong, and TIAN Sirui. An efficient sparse aperture ISAR imaging framework for maneuvering targets[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(2): 1873–1886. doi: 10.1109/tap.2023.3344877.
    [30]
    XU Gang, XING Mengdao, XIA Xianggen, et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4010–4027. doi: 10.1109/JSTARS.2015.2439266.
    [31]
    刘浩洋, 户将, 李勇锋, 等. 最优化: 建模、算法与理论[M]. 北京: 高等教育出版社, 2020: 254–262.

    LIU Haoyang, HU Jiang, LI Yongfeng, et al. Optimization: Modeling, Algorithm and Theory[M]. Beijing: Higher Education Press, 2020: 254–262.
    [32]
    LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/oe.25.014334.
  • Cited by

    Periodical cited type(7)

    1. 邵帅,邢雷,王峰. 基于遗传算法的机相扫机载预警雷达重点扇区波位排布方法. 中国电子科学研究院学报. 2023(06): 521-524+530 .
    2. 李纪三,刘溶,张宁. 高速旋转相控阵雷达基于资源预规划的任务调度算法. 电子科技大学学报. 2022(03): 377-383+480 .
    3. 李纪三,纪彦星,曹鼎,刘溶,任渊. 基于广义时间窗的旋转相控阵雷达资源调度算法. 电子学报. 2022(05): 1050-1057 .
    4. 鲁金,畅言,陈春. 基于多级时间窗的综合优先级雷达任务调度算法. 火控雷达技术. 2021(03): 39-41+52 .
    5. 柴炎,郑海宾,朱宏梁,张宇. 云平台下自适应调度算法的优化分析. 数码世界. 2019(03): 172 .
    6. 徐玲,祝军. 制药智能工厂生产物流调度系统柔性管控优化算法. 电子技术与软件工程. 2019(22): 102-103 .
    7. 方旖,陈秋菊,潘继飞,毕大平. 基于贝叶斯的多功能雷达脉冲列变化点检测. 指挥与控制学报. 2019(04): 308-315 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(337) PDF downloads(85) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint