SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149
Citation: Dai Huanyao, Liu Yong, Huang Zhenyu, Zhang Yang. Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker[J]. Journal of Radars, 2016, 5(2): 156-163. doi: 10.12000/JR16046

Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker

DOI: 10.12000/JR16046
Funds:

The National Natural Science Foundation of China (61301236, 61401469)

  • Received Date: 2016-03-01
  • Rev Recd Date: 2016-04-10
  • Publish Date: 2016-04-28
  • Multipath jamming is an effective self-defense jamming mode used to counter airborne fire-control radar or radar seekers. Multipath jamming has a deceptive jamming effect on the range, velocity, and angle of radar, making it difficult to identify and suppress. In this study, a polarized radar seeker structure is proposed. Based on the mechanism of the multipath jamming effect on radar, orthogonal polarization signal models of jamming and direct arrived signal are established. Next, a method to detect multipath jamming based on statistical property differences of polarization phases is proposed. The physical connotation of this method is clear and easy to realize. This method can be used to determine the presence of a jamming signal and identify the signal pattern and polarization types. The feasibility of this method has been verified via a simulation experiment, thereby demonstrating that the method serves as a useful reference for effectively countering multipath jamming.

     

  • [1]
    Wang Liandong, Dai Huanyao, and Yang Hui. A novel pulsed Doppler radar seeker modeling method used for closed loop trajectory simulation[J]. IEICE Electronics Express, 2014, 11(22): 110.
    [2]
    平殿发, 张伟, 苏峰. 机载对映体干扰有效性分析[J]. 雷达科学 与技术, 2014, 12(3): 235239. Ping Dianfa, Zhang Wei, and Su Feng. Airborne imagejamming efficiency analysis[J]. Radar Science and Technology, 2014, 12(3): 235239.
    [3]
    李勇, 叶志铨. 对映体干扰原理及影响干扰效果的因素分析[J]. 电子信息对抗技术, 2006, 21(5): 2932. Li Yong and Ye Zhiquan. Analysis of image-jamming rationale and factors effecting the effectiveness[J]. Electronic Information Warfare Technology, 2006, 21(5): 2932
    [4]
    高彬, 毛士艺, 孙进平, 等. 对映体干扰作战效能仿真评估[J]. 弹箭与制导学报, 2010, 30(4): 223226. Gao Bin, Mao Shiyi, Sun Jinping, et al.. Simulation measures of efficiency for terrain bounce jamming[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(4): 223226.
    [5]
    Dai H Y, Wang X S, and Li Y Z. Main-lobe jamming suppression method of using spatial polarization characteristics of antenna[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 21672179.
    [6]
    Dai H Y, Wang X S, Luo J, et al.. A new polarimetric method by using spatial polarization characteristics of scanning antenna[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(3): 16531656.
    [7]
    张思远, 李永祯, 肖顺平. 空间两点源的单脉冲测角极化响应 研究[J]. 雷达科学与技术, 2015, 13(5): 467472. Zhang Siyuan, Li Yongzhen, and Xiao Shunping. Polarimetric response for dual-point sources in monopulse angular measurement system[J]. Radar Science and Technology, 2015, 13(5): 467472.
    [8]
    李永祯, 胡万秋, 陈思伟, 等. 有源转发式干扰的全极化单脉冲 雷达抑制方法研究[J]. 电子与信息学报, 2015, 37(2): 276282. Li Yongzhen, Hu Wanqiu, Chen Siwei, et al.. Active repeater jamming suppression using polarimetric monopulse radar[J]. Journal of Electronics Information Technology, 2015, 37(2): 276282.
    [9]
    Morris G V. Airborne Pulse Doppler Radar [M]. Beijing: Aviation Industry Publishing House, 1990, 12.
    [10]
    Eaves J and Reedy E. Principles of Modern Radar[M]. New York: Van Nostrand Reinhold, 1987.
    [11]
    戴幻尧, 申绪涧, 赵晶, 等. 动目标显示与脉冲多普勒雷达[M]. 国防工业出版社, 2016, 1. Dai Huanyao, Shen Xujian, Zhao Jing, et al.. MTI and Pulsed Doppler Radar with MATLAB[M]. National Defend Industry Press, 2016, 1.
    [12]
    韦顺军, 师君, 张晓玲, 等. 基于曲面投影的毫米波InSAR数据 成像方法[J]. 雷达学报, 2015, 4(1): 4959. Wei Shunjun, Shi Jun, Zhang Xiaoling, et al.. Millimeterwave interferometric synthetic aperture radar data imaging based on terrain surface projection[J]. Journal of Radars, 2015, 4(1): 4959.
  • Relative Articles

    [1]WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237
    [2]DENG Shasa, ZHANG Fan, YIN Qiang, MA Fei, YUAN Xinzhe. Refined Ship Feature Characterization Method of Full-polarimetric Synthetic Aperture Radar for Visual Interpretation[J]. Journal of Radars, 2024, 13(2): 374-395. doi: 10.12000/JR23078
    [3]WANG Yingjie, WANG Robert, YU Weidong, ZHAO Qingchao, LIU Kaiyu, LIU Dacheng, DENG Yunkai, OU Naiming, JIA Xiaoxue, ZHANG Heng, ZHAO Pengfei, WANG Wei, YU Wei, GE Daqing, TANG Xinming, LI Tao. See-Earth: SAR Constellation with Dense Time-SEries for Multi-dimensional Environmental Monitoring of the Earth[J]. Journal of Radars, 2021, 10(6): 842-864. doi: 10.12000/JR21176
    [4]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [5]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [6]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [7]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [8]ZOU Huanxin, LI Meilin, MA Qian, SUN Jiachi, CAO Xu, QIN Xianxiang. An Unsupervised PolSAR Image Classification Algorithm Based on Tensor Product Graph Diffusion[J]. Journal of Radars, 2019, 8(4): 436-447. doi: 10.12000/JR19057
    [9]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [10]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [11]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [12]XIAO Dongling, LIU Chang. PolSAR Terrain Classification Based on Fine-tuned Dilated Group-cross Convolution Neural Network[J]. Journal of Radars, 2019, 8(4): 479-489. doi: 10.12000/JR19039
    [13]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [14]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [15]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [16]Zou Huanxin, Luo Tiancheng, Zhang Yue, Zhou Shilin. Combined Conditional Random Fields Model for Supervised PolSAR Images Classification[J]. Journal of Radars, 2017, 6(5): 541-553. doi: 10.12000/JR16109
    [17]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [18]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [19]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Cited by

    Periodical cited type(1)

    1. 褚丽娜,郭利,马彦恒,史源平,梁文博. 小型旋翼无人机载圆周SAR成像研究综述. 兵器装备工程学报. 2025(02): 303-316 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.8 %FULLTEXT: 20.8 %META: 65.5 %META: 65.5 %PDF: 13.7 %PDF: 13.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %其他: 0.9 %其他: 0.9 %Central District: 0.1 %Central District: 0.1 %China: 0.4 %China: 0.4 %Russian Federation: 0.1 %Russian Federation: 0.1 %Taichung: 0.1 %Taichung: 0.1 %[]: 0.1 %[]: 0.1 %上海: 2.5 %上海: 2.5 %东京都: 0.1 %东京都: 0.1 %东莞: 0.4 %东莞: 0.4 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %京都: 0.1 %京都: 0.1 %伦敦: 0.1 %伦敦: 0.1 %保定: 0.3 %保定: 0.3 %六安: 0.1 %六安: 0.1 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 11.4 %北京: 11.4 %南京: 3.5 %南京: 3.5 %南充: 0.1 %南充: 0.1 %南宁: 0.7 %南宁: 0.7 %南阳: 0.4 %南阳: 0.4 %卡拉奇: 0.1 %卡拉奇: 0.1 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.9 %哈尔滨: 0.9 %塔斯卡卢萨: 0.1 %塔斯卡卢萨: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.3 %太原: 0.3 %威海: 0.2 %威海: 0.2 %安康: 0.4 %安康: 0.4 %宣城: 0.6 %宣城: 0.6 %巴黎: 0.1 %巴黎: 0.1 %常州: 1.0 %常州: 1.0 %常德: 0.2 %常德: 0.2 %广州: 2.2 %广州: 2.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延边: 0.1 %延边: 0.1 %开封: 0.2 %开封: 0.2 %弗吉: 0.1 %弗吉: 0.1 %张家口: 3.9 %张家口: 3.9 %徐州: 0.4 %徐州: 0.4 %意法半: 0.1 %意法半: 0.1 %成都: 3.1 %成都: 3.1 %扬州: 0.1 %扬州: 0.1 %斯特灵: 0.1 %斯特灵: 0.1 %新余: 0.2 %新余: 0.2 %新德里: 0.2 %新德里: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 2.4 %昆明: 2.4 %晋中: 0.2 %晋中: 0.2 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %松原: 0.1 %松原: 0.1 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.3 %桂林: 0.3 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.6 %沈阳: 0.6 %济南: 0.1 %济南: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.5 %深圳: 1.5 %渭南: 0.5 %渭南: 0.5 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %艾因: 0.1 %艾因: 0.1 %芒廷维尤: 19.9 %芒廷维尤: 19.9 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.4 %苏州: 0.4 %荆州: 0.2 %荆州: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %蒙特利尔: 0.1 %蒙特利尔: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 10.4 %西宁: 10.4 %西安: 10.4 %西安: 10.4 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.2 %费利蒙: 0.2 %赣州: 0.3 %赣州: 0.3 %运城: 0.6 %运城: 0.6 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.3 %郑州: 0.3 %鄂尔多斯: 0.1 %鄂尔多斯: 0.1 %重庆: 0.4 %重庆: 0.4 %镇江: 0.4 %镇江: 0.4 %长春: 0.1 %长春: 0.1 %长沙: 1.5 %长沙: 1.5 %长治: 0.1 %长治: 0.1 %青岛: 0.8 %青岛: 0.8 %韶关: 0.1 %韶关: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.3 %黄冈: 0.3 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他Central DistrictChinaRussian FederationTaichung[]上海东京都东莞临沂丹东京都伦敦保定六安兰辛内江加利福尼亚州北京南京南充南宁南阳卡拉奇印多尔厦门台北合肥哈尔滨塔斯卡卢萨天津太原威海安康宣城巴黎常州常德广州库比蒂诺延边开封弗吉张家口徐州意法半成都扬州斯特灵新余新德里无锡昆明晋中晋城朝阳杭州松原柳州格兰特县桂林武汉沈阳济南淮北淮南深圳渭南湖州湘潭漯河潍坊烟台盘锦石家庄福州秦皇岛纽约绵阳艾因芒廷维尤芝加哥苏州荆州葫芦岛蒙特利尔衡阳西宁西安西雅图贵阳费利蒙赣州运城邯郸郑州鄂尔多斯重庆镇江长春长沙长治青岛韶关香港特别行政区黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2430) PDF downloads(1282) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint