YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015
Citation: YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015

Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet

DOI: 10.12000/JR21015
Funds:  The National Natural Science Foundation of China (61871386), The Natural Science Fund for Distinguished Young Scholars of Hunan Province (2019JJ20022)
More Information
  • Corresponding author: LU Dawei, davidloo.nudt@gmail.com
  • Received Date: 2021-02-26
  • Rev Recd Date: 2021-07-13
  • Available Online: 2021-07-26
  • Publish Date: 2021-08-28
  • With the advent of the aging population, fall detection has gradually become a research hotspot. Aiming at the detection of human fall using millimeter-wave radar, a Range-Doppler heat map Sequence detection Network (RDSNet) model that combines the convolutional neural network and long short-term memory network is proposed in this study. First, feature extraction is performed using the convolutional neural network. After obtaining the feature vector, the feature vector corresponding to the dynamic sequence is inputted to the long short-term memory network. Subsequently, the time correlation information of the heat map sequence is learned. Finally, the detection results are obtained using the classifier. Moreover, diverse human movement information of different objects is collected using millimeter-wave radar, and a range-Doppler heat map dataset is built in this work. Comparative experiments show that the proposed RDSNet model can reach an accuracy of 96.67% and the calculation delay is not higher than 50 ms. The proposed RDSNet model has good generalization capabilities and provides new technical ideas for human fall detection and human posture recognition.

     

  • [1]
    师昉, 李福亮, 张思佳, 等. 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021

    SHI Fang, LI Fuliang, ZHANG Sijia, et al. The present situation and countermeasures of the study of senile falls in China[J]. Chinese Journal of Rehabilitation, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021
    [2]
    DHARUNGEERAN N and JAFARALI J. Sensors-based wearable systems for monitoring of human movement and falls[J]. International Journal of Modern Trends in Engineering and Science, 2014, 1(3): 64–69.
    [3]
    GASPARRINI S, CIPPITELLI E, GAMBI E, et al. Proposal and Experimental Evaluation of Fall Detection Solution Based on Wearable and Depth Data Fusion[M]. LOSHKOVSKA S and KOCESKI S. Advances in Intelligent Systems and Computing. Cham: Springer, 2016, 399: 99–108. doi: 10.1007/978-3-319-25733-4_11.
    [4]
    吕艳, 张萌, 姜吴昊, 等. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报: 工学版, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012

    LV Yan, ZHANG Meng, JIANG Wuhao, et al. Design of elderly fall detection system using CNN[J]. Journal of Zhejiang University:Engineering Science, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012
    [5]
    CIPPITELLI E, FIORANELLI F, GAMBI E, et al. Radar and RGB-depth sensors for fall detection: A review[J]. IEEE Sensors Journal, 2017, 17(12): 3585–3604. doi: 10.1109/JSEN.2017.2697077
    [6]
    ZHANG Jing, LI Wanqing, OGUNBONA P O, et al. RGB-D-based action recognition datasets: A survey[J]. Pattern Recognition, 2016, 60: 86–105. doi: 10.1016/j.patcog.2016.05.019
    [7]
    ABOBAKR A, HOSSNY M, ABDELKADER H, et al. RGB-D fall detection via deep residual convolutional LSTM networks[C]. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018: 1–7. doi: 10.1109/DICTA.2018.8615759.
    [8]
    FENG Qi, GAO Chenqiang, WANG Lan, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242–249. doi: 10.1016/j.patrec.2018.08.031
    [9]
    BAO Nan, WU Chengyang, LIANG Qiancheng, et al. The intelligent monitoring for the elderly based on WiFi signals[C]. 18th Pacific-Rim Conference on Advances in Multimedia Information Processing, Harbin, China, 2018: 883–892. doi: 10.1007/978-3-319-77380-3_85.
    [10]
    HU Yuqian, ZHANG Feng, WU Chenshu, et al. A wifi-based passive fall detection system[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1723–1727. doi: 10.1109/ICASSP40776.2020.9054753.
    [11]
    MOKHTARI G, ZHANG Q, and FAZLOLLAHI A. Non-wearable UWB sensor to detect falls in smart home environment[C]. 2017 IEEE International Conference on Pervasive Computing and Communications Workshop, Kona, Italy, 2017: 274–278. doi: 10.1109/PERCOMW.2017.7917571.
    [12]
    MAITRE J, BOUCHARD K, and GABOURY S. Fall detection with UWB radars and CNN-LSTM architecture[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1273–1283. doi: 10.1109/JBHI.2020.3027967
    [13]
    JIN Feng, ZHANG Renyuan, SENGUPTA A, et al. Multiple patients behavior detection in real-time using mmwave radar and deep CNNs[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6.
    [14]
    WANG Bo, GUO Liang, ZHANG Hao, et al. A millimetre-wave radar-based fall detection method using line kernel convolutional neural network[J]. IEEE Sensors Journal, 2020, 20(22): 13364–13370. doi: 10.1109/JSEN.2020.3006918
    [15]
    SHRESTHA A, LI Haobo, LE KERNEC J, et al. Continuous human activity classification from FMCW radar with bi-LSTM networks[J]. IEEE Sensors Journal, 2020, 20(22): 13607–13619. doi: 10.1109/JSEN.2020.3006386
    [16]
    LI Haobo, SHRESTHA A, HEIDARI H, et al. Bi-LSTM network for multimodal continuous human activity recognition and fall detection[J]. IEEE Sensors Journal, 2020, 20(3): 1191–1201. doi: 10.1109/JSEN.2019.2946095
    [17]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [18]
    HUBEL D H and WIESEL T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3): 574–591. doi: 10.1113/jphysiol.1959.sp006308
    [19]
    田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037

    TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
    [20]
    韩昭蓉, 黄廷磊, 任文娟, 等. 基于Bi-LSTM模型的轨迹异常点检测算法[J]. 雷达学报, 2019, 8(1): 36–43. doi: 10.12000/JR18039

    HAN Zhaorong, HUANG Tinglei, REN Wenjuan, et al. Trajectory outlier detection algorithm based on Bi-LSTM model[J]. Journal of Radars, 2019, 8(1): 36–43. doi: 10.12000/JR18039
    [21]
    LUNA-PEREJÓN F, DOMÍNGUEZ-MORALES M J, and CIVIT-BALCELLS A. Wearable fall detector using recurrent neural networks[J]. Sensors, 2019, 19(22): 4885. doi: 10.3390/s19224885
  • Relative Articles

    [1]LI Can, WANG Zengfu, ZHANG Xiaoxuan, PAN Quan. Land-sea Clutter Classification Method Based on Multi-channel Graph Convolutional Networks[J]. Journal of Radars, 2025, 14(2): 322-337. doi: 10.12000/JR24165
    [2]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [3]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [4]LI Yi, XIA Weijie, ZHOU Jianjiang, CHU Yongyan. A Range-angle Joint Imaging Algorithm for Automotive Radar Systems Based on Doppler Domain Compensation[J]. Journal of Radars, 2023, 12(5): 971-985. doi: 10.12000/JR23097
    [5]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [6]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [7]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [8]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [9]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [10]SUN Hao, CHEN Jin, LEI Lin, JI Kefeng, KUANG Gangyao. Adversarial Robustness of Deep Convolutional Neural Network-based Image Recognition Models: A Review[J]. Journal of Radars, 2021, 10(4): 571-594. doi: 10.12000/JR21048
    [11]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [12]LI Weijie, YANG Wei, LI Xiang, LIU Yongxiang. Robust High Resolution Range Profile Recognition Method for Radar Targets in Noisy Environments[J]. Journal of Radars, 2020, 9(4): 622-631. doi: 10.12000/JR19093
    [13]SHI Jun, QUE Yujia, ZHOU Zenan, ZHOU Yuanyuan, ZHANG Xiaoling, SUN Mingfang. Near-field Millimeter Wave 3D Imaging and Object Detection Method[J]. Journal of Radars, 2019, 8(5): 578-588. doi: 10.12000/JR18089
    [14]CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041
    [15]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [16]ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, WEI Shunjun. High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network[J]. Journal of Radars, 2019, 8(6): 841-851. doi: 10.12000/JR19111
    [17]Su Ningyuan, Chen Xiaolong, Guan Jian, Mou Xiaoqian, Liu Ningbo. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018, 7(5): 565-574. doi: 10.12000/JR18077
    [18]Zhao Juanping, Guo Weiwei, Liu Bin, Cui Shiyong, Zhang Zenghui, Yu Wenxian. Convolutional Neural Network-based SAR Image Classification with Noisy Labels[J]. Journal of Radars, 2017, 6(5): 514-523. doi: 10.12000/JR16140
    [19]Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [20]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
  • Cited by

    Periodical cited type(34)

    1. 王萍,高娇娇,张振亚,殷涛,王文凯. 基于UWB二维信道状态信息的室内人员摔倒检测方法. 传感器与微系统. 2025(02): 155-159 .
    2. 宋永坤,晏天兴,张可,刘显,戴永鹏,金添. 基于点云时空特征的超宽带雷达轻量化人体行为识别方法. 雷达学报(中英文). 2025(01): 1-15 .
    3. 任振裕,吉辰卿,余潮,陈万里,王锐. 面向毫米波动作识别的视觉辅助信道仿真技术. 雷达学报(中英文). 2025(01): 90-101 .
    4. 丁传威,刘芷麟,张力,赵恒,周庆,洪弘,朱晓华. 基于MIMO雷达成像图序列的切向人体姿态识别方法. 雷达学报(中英文). 2025(01): 151-167 .
    5. 李未一,杨健,方旖,贾勇,张伟. 基于散射分离的多通道雷达人体行为识别方法. 电波科学学报. 2025(01): 172-183 .
    6. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 .
    7. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 .
    8. 林志伟,刘梓隆,袁煜盛,倪沁玮,蔡志明. 基于微多普勒特征的人体动作识别. 软件工程. 2024(03): 21-25 .
    9. 杨路,雷雨霄,余翔. 基于FMCW雷达的人体生命体征信号预测算法. 雷达科学与技术. 2024(01): 43-56 .
    10. 陈媛,林碧霞,陈瑞娥,李开新,蔡真真,聂伟琳,吴林静. 住院患者跌倒预防护理决策支持系统的开发与应用. 中国卫生质量管理. 2024(07): 12-16+31 .
    11. 孙梓誉,顾晶. 基于雷达时频变换和残差网络的人体行为检测. 电子测量技术. 2024(10): 27-33 .
    12. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 .
    13. 余亚男,贾勇,杜玲丽,林凡强,郭世盛. 基于时空Transformer的毫米波雷达三维人体姿态重构. 信号处理. 2024(10): 1910-1920 .
    14. 吴哲夫,闫鑫悦,施汉银,龚树凤,方路平. 基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法. 传感技术学报. 2024(10): 1754-1763 .
    15. 卓智海,祝文胜,王双龙. 基于双注意力机制的FMCW雷达人体行为识别. 北京信息科技大学学报(自然科学版). 2024(05): 58-66 .
    16. 龚树凤,施汉银,闫鑫悦,吴哲夫. 基于度量学习的毫米波雷达少样本人体动作识别. 传感技术学报. 2024(11): 1921-1930 .
    17. 高鹏,张岩,唐新余,王蒙,季文飞. 结合注意力机制的雷达多信号动作识别方法. 计算机技术与发展. 2023(01): 157-164 .
    18. 张为威,金彤彤,孙童心,黄钰茹,郜洵,郑址洪. 智能居家养老场景下跌倒检测摄像头的交互设计. 计算机辅助设计与图形学学报. 2023(02): 238-247 .
    19. 田钰琪,刘康,张远辉. 基于毫米波雷达点云的人体动作识别. 中国计量大学学报. 2023(01): 66-73+83 .
    20. 许向阳,张俊强,沈月健,李猛. FMCW毫米波雷达跌倒检测算法研究. 软件工程. 2023(05): 6-10 .
    21. 刘伟,蒋雅婷,郑子淳. Wi-Fi技术在人体行为感知中的应用探讨. 信息与电脑(理论版). 2023(05): 209-212 .
    22. 刘树博,赖招宇,罗先喜,李跃忠,李智. 基于毫米波雷达与情感神经网络的室内人员跌倒检测算法. 中国电子科学研究院学报. 2023(03): 203-212 .
    23. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 .
    24. 汪超,刘思远,郑慧,卓智海. 基于轻量化卷积神经网络的人体动作识别. 北京信息科技大学学报(自然科学版). 2023(03): 22-26 .
    25. 周乐,陈一畅,刘铭哲,朱超. 基于多传感器融合的人体跌倒检测系统. 空天预警研究学报. 2023(02): 129-135 .
    26. 丰玉华,魏怡,刘力手,丰圆丹,李可. 面向跌倒行人的MP-YOLOv5检测模型. 重庆邮电大学学报(自然科学版). 2023(05): 960-970 .
    27. 漆晶,汪正东,谢广智. 基于胸腔信号样本的FMCW雷达身份验证. 雷达科学与技术. 2023(05): 539-546+554 .
    28. 瓦其日体,李刚,赵志纯,则正华. 基于直方图分析和自适应遗传的雷达道路目标识别特征优选方法. 雷达学报. 2023(05): 1014-1030 . 本站查看
    29. 马泽宇,叶宁,徐康,王甦,王汝传. 基于FMCW雷达和ResNeSt-GRU的行为识别方法. 计算机与现代化. 2023(11): 101-107+112 .
    30. 赵举,郑建立. 基于多传感器和Bi-LSTM的个性化跌倒检测研究. 智能计算机与应用. 2022(04): 146-150+158 .
    31. 夏燕超,王彦,郭灵. 用于人体姿态检测的微波雷达研制. 南华大学学报(自然科学版). 2022(02): 49-56 .
    32. 方震,简璞,张浩,姚奕成,耿芳琳,刘畅宇,闫百驹,王鹏,杜利东,陈贤祥. 基于FMCW雷达的非接触式医疗健康监测技术综述. 雷达学报. 2022(03): 499-516 . 本站查看
    33. 翟靖宇,陈金立. 基于LSTM-Attention的毫米波雷达行人轨迹预测方法. 中国电子科学研究院学报. 2022(06): 534-541 .
    34. 杨洲,李洋,段洁利,徐兴,余家祥,申东英,袁浩天. 基于毫米波雷达的果园单木冠层信息提取. 农业工程学报. 2021(21): 173-182 .

    Other cited types(40)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(7429) PDF downloads(835) Cited by(74)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint