Citation: | YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015 |
[1] |
师昉, 李福亮, 张思佳, 等. 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021
SHI Fang, LI Fuliang, ZHANG Sijia, et al. The present situation and countermeasures of the study of senile falls in China[J]. Chinese Journal of Rehabilitation, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021
|
[2] |
DHARUNGEERAN N and JAFARALI J. Sensors-based wearable systems for monitoring of human movement and falls[J]. International Journal of Modern Trends in Engineering and Science, 2014, 1(3): 64–69.
|
[3] |
GASPARRINI S, CIPPITELLI E, GAMBI E, et al. Proposal and Experimental Evaluation of Fall Detection Solution Based on Wearable and Depth Data Fusion[M]. LOSHKOVSKA S and KOCESKI S. Advances in Intelligent Systems and Computing. Cham: Springer, 2016, 399: 99–108. doi: 10.1007/978-3-319-25733-4_11.
|
[4] |
吕艳, 张萌, 姜吴昊, 等. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报: 工学版, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012
LV Yan, ZHANG Meng, JIANG Wuhao, et al. Design of elderly fall detection system using CNN[J]. Journal of Zhejiang University:Engineering Science, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012
|
[5] |
CIPPITELLI E, FIORANELLI F, GAMBI E, et al. Radar and RGB-depth sensors for fall detection: A review[J]. IEEE Sensors Journal, 2017, 17(12): 3585–3604. doi: 10.1109/JSEN.2017.2697077
|
[6] |
ZHANG Jing, LI Wanqing, OGUNBONA P O, et al. RGB-D-based action recognition datasets: A survey[J]. Pattern Recognition, 2016, 60: 86–105. doi: 10.1016/j.patcog.2016.05.019
|
[7] |
ABOBAKR A, HOSSNY M, ABDELKADER H, et al. RGB-D fall detection via deep residual convolutional LSTM networks[C]. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018: 1–7. doi: 10.1109/DICTA.2018.8615759.
|
[8] |
FENG Qi, GAO Chenqiang, WANG Lan, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242–249. doi: 10.1016/j.patrec.2018.08.031
|
[9] |
BAO Nan, WU Chengyang, LIANG Qiancheng, et al. The intelligent monitoring for the elderly based on WiFi signals[C]. 18th Pacific-Rim Conference on Advances in Multimedia Information Processing, Harbin, China, 2018: 883–892. doi: 10.1007/978-3-319-77380-3_85.
|
[10] |
HU Yuqian, ZHANG Feng, WU Chenshu, et al. A wifi-based passive fall detection system[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1723–1727. doi: 10.1109/ICASSP40776.2020.9054753.
|
[11] |
MOKHTARI G, ZHANG Q, and FAZLOLLAHI A. Non-wearable UWB sensor to detect falls in smart home environment[C]. 2017 IEEE International Conference on Pervasive Computing and Communications Workshop, Kona, Italy, 2017: 274–278. doi: 10.1109/PERCOMW.2017.7917571.
|
[12] |
MAITRE J, BOUCHARD K, and GABOURY S. Fall detection with UWB radars and CNN-LSTM architecture[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1273–1283. doi: 10.1109/JBHI.2020.3027967
|
[13] |
JIN Feng, ZHANG Renyuan, SENGUPTA A, et al. Multiple patients behavior detection in real-time using mmwave radar and deep CNNs[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6.
|
[14] |
WANG Bo, GUO Liang, ZHANG Hao, et al. A millimetre-wave radar-based fall detection method using line kernel convolutional neural network[J]. IEEE Sensors Journal, 2020, 20(22): 13364–13370. doi: 10.1109/JSEN.2020.3006918
|
[15] |
SHRESTHA A, LI Haobo, LE KERNEC J, et al. Continuous human activity classification from FMCW radar with bi-LSTM networks[J]. IEEE Sensors Journal, 2020, 20(22): 13607–13619. doi: 10.1109/JSEN.2020.3006386
|
[16] |
LI Haobo, SHRESTHA A, HEIDARI H, et al. Bi-LSTM network for multimodal continuous human activity recognition and fall detection[J]. IEEE Sensors Journal, 2020, 20(3): 1191–1201. doi: 10.1109/JSEN.2019.2946095
|
[17] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[18] |
HUBEL D H and WIESEL T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3): 574–591. doi: 10.1113/jphysiol.1959.sp006308
|
[19] |
田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037
TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
|
[20] |
韩昭蓉, 黄廷磊, 任文娟, 等. 基于Bi-LSTM模型的轨迹异常点检测算法[J]. 雷达学报, 2019, 8(1): 36–43. doi: 10.12000/JR18039
HAN Zhaorong, HUANG Tinglei, REN Wenjuan, et al. Trajectory outlier detection algorithm based on Bi-LSTM model[J]. Journal of Radars, 2019, 8(1): 36–43. doi: 10.12000/JR18039
|
[21] |
LUNA-PEREJÓN F, DOMÍNGUEZ-MORALES M J, and CIVIT-BALCELLS A. Wearable fall detector using recurrent neural networks[J]. Sensors, 2019, 19(22): 4885. doi: 10.3390/s19224885
|
[1] | LI Can, WANG Zengfu, ZHANG Xiaoxuan, PAN Quan. Land-sea Clutter Classification Method Based on Multi-channel Graph Convolutional Networks[J]. Journal of Radars, 2025, 14(2): 322-337. doi: 10.12000/JR24165 |
[2] | ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107 |
[3] | JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195 |
[4] | LI Yi, XIA Weijie, ZHOU Jianjiang, CHU Yongyan. A Range-angle Joint Imaging Algorithm for Automotive Radar Systems Based on Doppler Domain Compensation[J]. Journal of Radars, 2023, 12(5): 971-985. doi: 10.12000/JR23097 |
[5] | SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040 |
[6] | MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001 |
[7] | HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169 |
[8] | LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004 |
[9] | DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161 |
[10] | SUN Hao, CHEN Jin, LEI Lin, JI Kefeng, KUANG Gangyao. Adversarial Robustness of Deep Convolutional Neural Network-based Image Recognition Models: A Review[J]. Journal of Radars, 2021, 10(4): 571-594. doi: 10.12000/JR21048 |
[11] | DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036 |
[12] | LI Weijie, YANG Wei, LI Xiang, LIU Yongxiang. Robust High Resolution Range Profile Recognition Method for Radar Targets in Noisy Environments[J]. Journal of Radars, 2020, 9(4): 622-631. doi: 10.12000/JR19093 |
[13] | SHI Jun, QUE Yujia, ZHOU Zenan, ZHOU Yuanyuan, ZHANG Xiaoling, SUN Mingfang. Near-field Millimeter Wave 3D Imaging and Object Detection Method[J]. Journal of Radars, 2019, 8(5): 578-588. doi: 10.12000/JR18089 |
[14] | CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041 |
[15] | HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065 |
[16] | ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, WEI Shunjun. High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network[J]. Journal of Radars, 2019, 8(6): 841-851. doi: 10.12000/JR19111 |
[17] | Su Ningyuan, Chen Xiaolong, Guan Jian, Mou Xiaoqian, Liu Ningbo. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018, 7(5): 565-574. doi: 10.12000/JR18077 |
[18] | Zhao Juanping, Guo Weiwei, Liu Bin, Cui Shiyong, Zhang Zenghui, Yu Wenxian. Convolutional Neural Network-based SAR Image Classification with Noisy Labels[J]. Journal of Radars, 2017, 6(5): 514-523. doi: 10.12000/JR16140 |
[19] | Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009 |
[20] | Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037 |
1. | 王萍,高娇娇,张振亚,殷涛,王文凯. 基于UWB二维信道状态信息的室内人员摔倒检测方法. 传感器与微系统. 2025(02): 155-159 . ![]() | |
2. | 宋永坤,晏天兴,张可,刘显,戴永鹏,金添. 基于点云时空特征的超宽带雷达轻量化人体行为识别方法. 雷达学报(中英文). 2025(01): 1-15 . ![]() | |
3. | 任振裕,吉辰卿,余潮,陈万里,王锐. 面向毫米波动作识别的视觉辅助信道仿真技术. 雷达学报(中英文). 2025(01): 90-101 . ![]() | |
4. | 丁传威,刘芷麟,张力,赵恒,周庆,洪弘,朱晓华. 基于MIMO雷达成像图序列的切向人体姿态识别方法. 雷达学报(中英文). 2025(01): 151-167 . ![]() | |
5. | 李未一,杨健,方旖,贾勇,张伟. 基于散射分离的多通道雷达人体行为识别方法. 电波科学学报. 2025(01): 172-183 . ![]() | |
6. | 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . ![]() | |
7. | 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . ![]() | |
8. | 林志伟,刘梓隆,袁煜盛,倪沁玮,蔡志明. 基于微多普勒特征的人体动作识别. 软件工程. 2024(03): 21-25 . ![]() | |
9. | 杨路,雷雨霄,余翔. 基于FMCW雷达的人体生命体征信号预测算法. 雷达科学与技术. 2024(01): 43-56 . ![]() | |
10. | 陈媛,林碧霞,陈瑞娥,李开新,蔡真真,聂伟琳,吴林静. 住院患者跌倒预防护理决策支持系统的开发与应用. 中国卫生质量管理. 2024(07): 12-16+31 . ![]() | |
11. | 孙梓誉,顾晶. 基于雷达时频变换和残差网络的人体行为检测. 电子测量技术. 2024(10): 27-33 . ![]() | |
12. | 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 . ![]() | |
13. | 余亚男,贾勇,杜玲丽,林凡强,郭世盛. 基于时空Transformer的毫米波雷达三维人体姿态重构. 信号处理. 2024(10): 1910-1920 . ![]() | |
14. | 吴哲夫,闫鑫悦,施汉银,龚树凤,方路平. 基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法. 传感技术学报. 2024(10): 1754-1763 . ![]() | |
15. | 卓智海,祝文胜,王双龙. 基于双注意力机制的FMCW雷达人体行为识别. 北京信息科技大学学报(自然科学版). 2024(05): 58-66 . ![]() | |
16. | 龚树凤,施汉银,闫鑫悦,吴哲夫. 基于度量学习的毫米波雷达少样本人体动作识别. 传感技术学报. 2024(11): 1921-1930 . ![]() | |
17. | 高鹏,张岩,唐新余,王蒙,季文飞. 结合注意力机制的雷达多信号动作识别方法. 计算机技术与发展. 2023(01): 157-164 . ![]() | |
18. | 张为威,金彤彤,孙童心,黄钰茹,郜洵,郑址洪. 智能居家养老场景下跌倒检测摄像头的交互设计. 计算机辅助设计与图形学学报. 2023(02): 238-247 . ![]() | |
19. | 田钰琪,刘康,张远辉. 基于毫米波雷达点云的人体动作识别. 中国计量大学学报. 2023(01): 66-73+83 . ![]() | |
20. | 许向阳,张俊强,沈月健,李猛. FMCW毫米波雷达跌倒检测算法研究. 软件工程. 2023(05): 6-10 . ![]() | |
21. | 刘伟,蒋雅婷,郑子淳. Wi-Fi技术在人体行为感知中的应用探讨. 信息与电脑(理论版). 2023(05): 209-212 . ![]() | |
22. | 刘树博,赖招宇,罗先喜,李跃忠,李智. 基于毫米波雷达与情感神经网络的室内人员跌倒检测算法. 中国电子科学研究院学报. 2023(03): 203-212 . ![]() | |
23. | 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . ![]() | |
24. | 汪超,刘思远,郑慧,卓智海. 基于轻量化卷积神经网络的人体动作识别. 北京信息科技大学学报(自然科学版). 2023(03): 22-26 . ![]() | |
25. | 周乐,陈一畅,刘铭哲,朱超. 基于多传感器融合的人体跌倒检测系统. 空天预警研究学报. 2023(02): 129-135 . ![]() | |
26. | 丰玉华,魏怡,刘力手,丰圆丹,李可. 面向跌倒行人的MP-YOLOv5检测模型. 重庆邮电大学学报(自然科学版). 2023(05): 960-970 . ![]() | |
27. | 漆晶,汪正东,谢广智. 基于胸腔信号样本的FMCW雷达身份验证. 雷达科学与技术. 2023(05): 539-546+554 . ![]() | |
28. | 瓦其日体,李刚,赵志纯,则正华. 基于直方图分析和自适应遗传的雷达道路目标识别特征优选方法. 雷达学报. 2023(05): 1014-1030 . ![]() | |
29. | 马泽宇,叶宁,徐康,王甦,王汝传. 基于FMCW雷达和ResNeSt-GRU的行为识别方法. 计算机与现代化. 2023(11): 101-107+112 . ![]() | |
30. | 赵举,郑建立. 基于多传感器和Bi-LSTM的个性化跌倒检测研究. 智能计算机与应用. 2022(04): 146-150+158 . ![]() | |
31. | 夏燕超,王彦,郭灵. 用于人体姿态检测的微波雷达研制. 南华大学学报(自然科学版). 2022(02): 49-56 . ![]() | |
32. | 方震,简璞,张浩,姚奕成,耿芳琳,刘畅宇,闫百驹,王鹏,杜利东,陈贤祥. 基于FMCW雷达的非接触式医疗健康监测技术综述. 雷达学报. 2022(03): 499-516 . ![]() | |
33. | 翟靖宇,陈金立. 基于LSTM-Attention的毫米波雷达行人轨迹预测方法. 中国电子科学研究院学报. 2022(06): 534-541 . ![]() | |
34. | 杨洲,李洋,段洁利,徐兴,余家祥,申东英,袁浩天. 基于毫米波雷达的果园单木冠层信息提取. 农业工程学报. 2021(21): 173-182 . ![]() |