Volume 10 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015
Citation: YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015

Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet

DOI: 10.12000/JR21015
Funds:  The National Natural Science Foundation of China (61871386), The Natural Science Fund for Distinguished Young Scholars of Hunan Province (2019JJ20022)
More Information
  • Corresponding author: LU Dawei, davidloo.nudt@gmail.com
  • Received Date: 2021-02-26
  • Rev Recd Date: 2021-07-13
  • Available Online: 2021-07-26
  • Publish Date: 2021-08-28
  • With the advent of the aging population, fall detection has gradually become a research hotspot. Aiming at the detection of human fall using millimeter-wave radar, a Range-Doppler heat map Sequence detection Network (RDSNet) model that combines the convolutional neural network and long short-term memory network is proposed in this study. First, feature extraction is performed using the convolutional neural network. After obtaining the feature vector, the feature vector corresponding to the dynamic sequence is inputted to the long short-term memory network. Subsequently, the time correlation information of the heat map sequence is learned. Finally, the detection results are obtained using the classifier. Moreover, diverse human movement information of different objects is collected using millimeter-wave radar, and a range-Doppler heat map dataset is built in this work. Comparative experiments show that the proposed RDSNet model can reach an accuracy of 96.67% and the calculation delay is not higher than 50 ms. The proposed RDSNet model has good generalization capabilities and provides new technical ideas for human fall detection and human posture recognition.

     

  • loading
  • [1]
    师昉, 李福亮, 张思佳, 等. 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021

    SHI Fang, LI Fuliang, ZHANG Sijia, et al. The present situation and countermeasures of the study of senile falls in China[J]. Chinese Journal of Rehabilitation, 2018, 33(3): 246–248. doi: 10.3870/zgkf.2018.03.021
    [2]
    DHARUNGEERAN N and JAFARALI J. Sensors-based wearable systems for monitoring of human movement and falls[J]. International Journal of Modern Trends in Engineering and Science, 2014, 1(3): 64–69.
    [3]
    GASPARRINI S, CIPPITELLI E, GAMBI E, et al. Proposal and Experimental Evaluation of Fall Detection Solution Based on Wearable and Depth Data Fusion[M]. LOSHKOVSKA S and KOCESKI S. Advances in Intelligent Systems and Computing. Cham: Springer, 2016, 399: 99–108. doi: 10.1007/978-3-319-25733-4_11.
    [4]
    吕艳, 张萌, 姜吴昊, 等. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报: 工学版, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012

    LV Yan, ZHANG Meng, JIANG Wuhao, et al. Design of elderly fall detection system using CNN[J]. Journal of Zhejiang University:Engineering Science, 2019, 53(6): 1130–1138. doi: 10.3785/j.issn.1008-973X.2019.06.012
    [5]
    CIPPITELLI E, FIORANELLI F, GAMBI E, et al. Radar and RGB-depth sensors for fall detection: A review[J]. IEEE Sensors Journal, 2017, 17(12): 3585–3604. doi: 10.1109/JSEN.2017.2697077
    [6]
    ZHANG Jing, LI Wanqing, OGUNBONA P O, et al. RGB-D-based action recognition datasets: A survey[J]. Pattern Recognition, 2016, 60: 86–105. doi: 10.1016/j.patcog.2016.05.019
    [7]
    ABOBAKR A, HOSSNY M, ABDELKADER H, et al. RGB-D fall detection via deep residual convolutional LSTM networks[C]. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018: 1–7. doi: 10.1109/DICTA.2018.8615759.
    [8]
    FENG Qi, GAO Chenqiang, WANG Lan, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242–249. doi: 10.1016/j.patrec.2018.08.031
    [9]
    BAO Nan, WU Chengyang, LIANG Qiancheng, et al. The intelligent monitoring for the elderly based on WiFi signals[C]. 18th Pacific-Rim Conference on Advances in Multimedia Information Processing, Harbin, China, 2018: 883–892. doi: 10.1007/978-3-319-77380-3_85.
    [10]
    HU Yuqian, ZHANG Feng, WU Chenshu, et al. A wifi-based passive fall detection system[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1723–1727. doi: 10.1109/ICASSP40776.2020.9054753.
    [11]
    MOKHTARI G, ZHANG Q, and FAZLOLLAHI A. Non-wearable UWB sensor to detect falls in smart home environment[C]. 2017 IEEE International Conference on Pervasive Computing and Communications Workshop, Kona, Italy, 2017: 274–278. doi: 10.1109/PERCOMW.2017.7917571.
    [12]
    MAITRE J, BOUCHARD K, and GABOURY S. Fall detection with UWB radars and CNN-LSTM architecture[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1273–1283. doi: 10.1109/JBHI.2020.3027967
    [13]
    JIN Feng, ZHANG Renyuan, SENGUPTA A, et al. Multiple patients behavior detection in real-time using mmwave radar and deep CNNs[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6.
    [14]
    WANG Bo, GUO Liang, ZHANG Hao, et al. A millimetre-wave radar-based fall detection method using line kernel convolutional neural network[J]. IEEE Sensors Journal, 2020, 20(22): 13364–13370. doi: 10.1109/JSEN.2020.3006918
    [15]
    SHRESTHA A, LI Haobo, LE KERNEC J, et al. Continuous human activity classification from FMCW radar with bi-LSTM networks[J]. IEEE Sensors Journal, 2020, 20(22): 13607–13619. doi: 10.1109/JSEN.2020.3006386
    [16]
    LI Haobo, SHRESTHA A, HEIDARI H, et al. Bi-LSTM network for multimodal continuous human activity recognition and fall detection[J]. IEEE Sensors Journal, 2020, 20(3): 1191–1201. doi: 10.1109/JSEN.2019.2946095
    [17]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [18]
    HUBEL D H and WIESEL T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3): 574–591. doi: 10.1113/jphysiol.1959.sp006308
    [19]
    田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037

    TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
    [20]
    韩昭蓉, 黄廷磊, 任文娟, 等. 基于Bi-LSTM模型的轨迹异常点检测算法[J]. 雷达学报, 2019, 8(1): 36–43. doi: 10.12000/JR18039

    HAN Zhaorong, HUANG Tinglei, REN Wenjuan, et al. Trajectory outlier detection algorithm based on Bi-LSTM model[J]. Journal of Radars, 2019, 8(1): 36–43. doi: 10.12000/JR18039
    [21]
    LUNA-PEREJÓN F, DOMÍNGUEZ-MORALES M J, and CIVIT-BALCELLS A. Wearable fall detector using recurrent neural networks[J]. Sensors, 2019, 19(22): 4885. doi: 10.3390/s19224885
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(6866) PDF downloads(775) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint