Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: LI Can, WANG Zengfu, ZHANG Xiaoxuan, et al. Land-sea clutter classification method based on multi-channel graph convolutional networks[J]. Journal of Radars, 2025, 14(2): 322–337. doi: 10.12000/JR24165

Land-sea Clutter Classification Method Based on Multi-channel Graph Convolutional Networks

DOI: 10.12000/JR24165 CSTR: 32380.14.JR24165
Funds:  The National Natural Science Foundation of China (62473317, U21B2008)
More Information
  • Corresponding author: WANG Zengfu, wangzengfu@nwpu.edu.cn
  • Received Date: 2024-08-15
  • Rev Recd Date: 2024-10-03
  • Available Online: 2024-10-12
  • Publish Date: 2024-12-10
  • Land-sea clutter classification is essential for boosting the target positioning accuracy of skywave over-the-horizon radar. This classification process involves discriminating whether each azimuth-range cell in the Range-Doppler (RD) map is overland or sea. Traditional deep learning methods for this task require extensive, high-quality, and class-balanced labeled samples, leading to long training periods and high costs. In addition, these methods typically use a single azimuth-range cell clutter without considering intra-class and inter-class relationships, resulting in poor model performance. To address these challenges, this study analyzes the correlation between adjacent azimuth-range cells, and converts land-sea clutter data from Euclidean space into graph data in non-Euclidean space, thereby incorporating sample relationships. We propose a Multi-Channel Graph Convolutional Networks (MC-GCN) for land-sea clutter classification. MC-GCN decomposes graph data from a single channel into multiple channels, each containing a single type of edge and a weight matrix. This approach restricts node information aggregation, effectively reducing node attribute misjudgment caused by data heterogeneity. For validation, RD maps from various seasons, times, and detection areas were selected. Based on radar parameters, data characteristics, and sample proportions, we construct a land-sea clutter original dataset containing 12 different scenes and a land-sea clutter scarce dataset containing 36 different configurations. The effectiveness of MC-GCN is confirmed, with the approach outperforming state-of-the-art classification methods with a classification accuracy of at least 92%.

     

  • [1]
    GUO Zhen, WANG Zengfu, LAN Hua, et al. OTHR multitarget tracking with a GMRF model of ionospheric parameters[J]. Signal Processing, 2021, 182: 107940. doi: 10.1016/j.sigpro.2020.107940.
    [2]
    LAN Hua, WANG Zengfu, BAI Xianglong, et al. Measurement-level target tracking fusion for over-the-horizon radar network using message passing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1600–1623. doi: 10.1109/TAES.2020.3044109.
    [3]
    GUO Zhen, WANG Zengfu, HAO Yuhang, et al. An improved coordinate registration for over-the-horizon radar using reference sources[J]. Electronics, 2021, 10(24): 3086. doi: 10.3390/electronics10243086.
    [4]
    WHEADON N S, WHITEHOUSE J C, MILSOM J D, et al. Ionospheric modelling and target coordinate registration for HF sky-wave radars[C]. 1994 Sixth International Conference on HF Radio Systems and Techniques, York, UK, 1994: 258–266. doi: 10.1049/cp:19940504.
    [5]
    BARNUM J R and SIMPSON E E. Over-the-horizon radar target registration improvement by terrain feature localization[J]. Radio Science, 1998, 33(4): 1077–1093. doi: 10.1029/98RS00831.
    [6]
    TURLEY M D E, GARDINER-GARDEN R S, and HOLDSWORTH D A. High-resolution wide area remote sensing for HF radar track registration[C]. 2013 International Conference on Radar, Adelaide, SA, Australia, 2013: 128–133. doi: 10.1109/RADAR.2013.6651973.
    [7]
    JIN Zhenlu, PAN Quan, ZHAO Chunhui, et al. SVM based land/sea clutter classification algorithm[J]. Applied Mechanics and Materials, 2012, 236/237: 1156–1162. doi: 10.4028/www.scientific.net/AMM.236-237.1156.
    [8]
    王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040.

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040.
    [9]
    何密, 平钦文, 戴然. 深度学习融合超宽带雷达图谱的跌倒检测研究[J]. 雷达学报, 2023, 12(2): 343–355. doi: 10.12000/JR22169.

    HE Mi, PING Qinwen, and DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars, 2023, 12(2): 343–355. doi: 10.12000/JR22169.
    [10]
    CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744.
    [11]
    LI Can, WANG Zengfu, ZHANG Zhishan, et al. Sea/land clutter recognition for over-the-horizon radar via deep CNN[C]. 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–5. doi: 10.1109/ICCAIS46528.2019.9074545.
    [12]
    李灿, 张钰, 王增福, 等. 基于代数多重网格的天波超视距雷达跨尺度地海杂波识别方法[J]. 电子学报, 2022, 50(12): 3021–3029. doi: 10.12263/DZXB.20220389.

    LI Can, ZHANG Yu, WANG Zengfu, et al. Cross-scale land/sea clutter classification method for over-the-horizon radar based on algebraic multigrid[J]. Acta Electronica Sinica, 2022, 50(12): 3021–3029. doi: 10.12263/DZXB.20220389.
    [13]
    ZHANG Xiaoxuan, WANG Zengfu, LU Kun, et al. Data augmentation and classification of sea-land clutter for over-the-horizon radar using AC-VAEGAN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104416. doi: 10.1109/TGRS.2023.3274296.
    [14]
    ZHANG Xiaoxuan, LI Yang, PAN Quan, et al. Triple loss adversarial domain adaptation network for cross-domain sea-land clutter classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5110718. doi: 10.1109/TGRS.2023.3328302.
    [15]
    ZHANG Xiaoxuan, WANG Zengfu, JI Mingyue, et al. A sea-land clutter classification framework for over-the-horizon radar based on weighted loss semi-supervised generative adversarial network[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108526. doi: 10.1016/j.engappai.2024.108526.
    [16]
    ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
    [17]
    WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386.
    [18]
    WU Lingfei, CHEN Yu, SHEN Kai, et al. Graph neural networks for natural language processing: A survey[J]. Foundations and Trends® in Machine Learning, 2023, 16(2): 119–328. doi: 10.1561/2200000096.
    [19]
    YUAN Hao, YU Haiyang, GUI Shurui, et al. Explainability in graph neural networks: A taxonomic survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5782–5799. doi: 10.1109/TPAMI.2022.3204236.
    [20]
    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Maritime target detection based on radar graph data and graph convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019705. doi: 10.1109/LGRS.2021.3133473.
    [21]
    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Radar maritime target detection via spatial-temporal feature attention graph convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5102615. doi: 10.1109/TGRS.2024.3358862.
    [22]
    LANG Ping, FU Xiongjun, DONG Jian, et al. A novel radar signals sorting method via residual graph convolutional network[J]. IEEE Signal Processing Letters, 2023, 30: 753–757. doi: 10.1109/LSP.2023.3287404.
    [23]
    FENT F, BAUERSCHMIDT P, and LIENKAMP M. RadarGNN: Transformation invariant graph neural network for radar-based perception[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, BC, Canada, 2023: 182–191. doi: 10.1109/CVPRW59228.2023.00023.
    [24]
    VELIČKOVIĆ P. Everything is connected: Graph neural networks[J]. Current Opinion in Structural Biology, 2023, 79: 102538. doi: 10.1016/j.sbi.2023.102538.
    [25]
    XIAO Shunxin, WANG Shiping, DAI Yuanfei, et al. Graph neural networks in node classification: Survey and evaluation[J]. Machine Vision and Applications, 2022, 33(1): 4. doi: 10.1007/s00138-021-01251-0.
    [26]
    NIVEN E B and DEUTSCH C V. Calculating a robust correlation coefficient and quantifying its uncertainty[J]. Computers & Geosciences, 2012, 40: 1–9. doi: 10.1016/j.cageo.2011.06.021.
    [27]
    KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. https://arxiv.org/abs/1609.02907, 2017.
    [28]
    CAI Lei, LI Jundong, WANG Jie, et al. Line graph neural networks for link prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5103–5113. doi: 10.1109/TPAMI.2021.3080635.
    [29]
    XIE Yu, LIANG Yanfeng, GONG Maoguo, et al. Semisupervised graph neural networks for graph classification[J]. IEEE Transactions on Cybernetics, 2023, 53(10): 6222–6235. doi: 10.1109/TCYB.2022.3164696.
    [30]
    LIAO Wenlong, BAK-JENSEN B, PILLAI J R, et al. A review of graph neural networks and their applications in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(2): 345–360. doi: 10.35833/MPCE.2021.000058.
    [31]
    MCPHERSON M, SMITH-LOVIN L, and COOK J M. Birds of a feather: Homophily in social networks[J]. Annual Review of Sociology, 2001, 27: 415–444. doi: 10.1146/annurev.soc.27.1.415.
    [32]
    VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. https://doi.org/10.48550/arXiv.1710.10903, 2017.
    [33]
    DU Jian, ZHANG Shanghang, WU Guanhang, et al. Topology adaptive graph convolutional networks[EB/OL]. https://doi.org/10.48550/arXiv.1710.10370, 2018.
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 56.2 %META: 56.2 %PDF: 11.6 %PDF: 11.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %其他: 2.0 %其他: 2.0 %Parkville: 0.1 %Parkville: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.9 %上海: 1.9 %东京: 0.3 %东京: 0.3 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.2 %九江: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 13.5 %北京: 13.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.3 %南京: 2.3 %南充: 0.2 %南充: 0.2 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.1 %台北: 0.1 %合肥: 1.1 %合肥: 1.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.4 %天津: 0.4 %天门: 0.1 %天门: 0.1 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %庆阳: 0.1 %庆阳: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.2 %延安: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 1.3 %张家口: 1.3 %徐州: 0.4 %徐州: 0.4 %德黑兰: 0.4 %德黑兰: 0.4 %忻州: 1.2 %忻州: 1.2 %怀化: 0.1 %怀化: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.5 %扬州: 0.5 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.1 %新德里: 0.1 %新泽西州: 0.1 %新泽西州: 0.1 %新竹: 0.2 %新竹: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.1 %昌吉: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.1 %深圳: 1.1 %渥太华: 0.2 %渥太华: 0.2 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 25.3 %芒廷维尤: 25.3 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.6 %衡水: 0.6 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.1 %衢州: 0.1 %西宁: 14.3 %西宁: 14.3 %西安: 2.6 %西安: 2.6 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.4 %遂宁: 0.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.4 %郑州: 0.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.4 %长沙: 1.4 %长治: 0.2 %长治: 0.2 %青岛: 0.4 %青岛: 0.4 %首尔: 0.3 %首尔: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ParkvilleUnited States[]上海东京东京都东莞中卫临汾临沂丹东乌鲁木齐九江保定兰州兰辛内江凉山北京十堰南京南充南宁南昌南通卡拉奇印多尔厦门台北合肥呼和浩特咸阳哈尔滨唐山喀什嘉兴大连天津天门太原威海娄底宁波安康宜春宣城常州常德平顶山广州庆阳库比蒂诺延安开封张家口徐州德黑兰忻州怀化悉尼成都扬州斯德哥尔摩新乡新德里新泽西州新竹无锡昆明昌吉晋中晋城朝阳杭州格兰特县桂林武威武汉沈阳沧州泉州洛阳济南济宁淮北淮南深圳渥太华温州渭南湖州湛江漯河烟台珠海石家庄福州秦皇岛纽约绵阳芒廷维尤芜湖芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城连云港遂宁邯郸郑州重庆长沙长治青岛首尔黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(573) PDF downloads(254) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint