Citation: | Su Ningyuan, Chen Xiaolong, Guan Jian, Mou Xiaoqian, Liu Ningbo. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018, 7(5): 565-574. doi: 10.12000/JR18077 |
[1] |
Darzikolaei M A, Ebrahimzade A, and Gholami E. Classification of radar clutters with artificial neural network[C]. Proceedings of the 2nd International Conference on Knowledge-Based Engineering and Innovation, Tehran, Iran, 2015: 577–581.
|
[2] |
陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123–134. DOI: 10.3724/SP.J.1300.2013.20102
Chen Xiao-long, Guan Jian, and He You. Applications and prospect of micro-motion theory in the detection of sea surface target[J].Journal of Radars, 2013, 2(1): 123–134. DOI: 10.3724/SP.J.1300.2013.20102
|
[3] |
罗迎, 张群, 王国正, 等. 基于复图像OMP分解的宽带雷达微动特征提取方法[J]. 雷达学报, 2012, 1(4): 361–369. DOI: 10.3724/SP.J.1300.2012.20065
Luo Ying, Zhang Qun, Wang Guo-zheng, et al. Micro-motion signature extraction method for wideband radar based on complex image OMP decomposition[J]. Journal of Radars, 2012, 1(4): 361–369. DOI: 10.3724/SP.J.1300.2012.20065
|
[4] |
Chen X L, Guan J, Bao Z H, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. DOI: 10.1109/TGRS.2013.2246574
|
[5] |
Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv’s distribution[J]. IET Radar,Sonar&Navigation, 2015, 9(9): 1284–1295. DOI: 10.1049/iet-rsn.2015.0100
|
[6] |
Wagner S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. DOI: 10.1109/TAES.2016.160061
|
[7] |
田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. DOI: 10.12000/JR16037
Tian Zhuang-zhuang, Zhan Rong-hui, Hu Jie-min, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. DOI: 10.12000/JR16037
|
[8] |
Kim Y and Toomajian B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130. DOI: 10.1109/ACCESS.2016.2617282
|
[9] |
王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. DOI: 10.12000/JR18040
Wang Jun, Zheng Tong, Lei Peng, et al. Survey of study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. DOI: 10.12000/JR18040
|
[10] |
徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38(12): 2988–2995. DOI: 10.11999/JEIT161034
Xu Bin, Chen Bo, Liu Hong-wei, et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics&Information Technology, 2016, 38(12): 2988–2995. DOI: 10.11999/JEIT161034
|
[11] |
王星, 周一鹏, 周冬青, 等. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972–2976. DOI: 10.11999/JEIT160031
Wang Xing, Zhou Yi-peng, Zhou Dong-qing, et al. Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice[J]. Journal of Electronics&Information Technology, 2016, 38(11): 2972–2976. DOI: 10.11999/JEIT160031
|
[12] |
徐真, 王宇, 李宁, 等. 一种基于CNN的SAR图像变化检测方法[J]. 雷达学报, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Xu Zhen, Wang Robert, Li Ning, et al. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
|
[13] |
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. DOI: 10.12000/JR16130
Xu Feng, Wang Hai-peng, and Jin Ya-qiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. DOI: 10.12000/JR16130
|
[14] |
陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4(6): 630–638. DOI: 10.12000/JR15079
Chen Xiao-long, Dong Yun-long, Li Xiu-you, et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4(6): 630–638. DOI: 10.12000/JR15079
|
[15] |
Prusa J D and Khoshgoftaar T M. Improving deep neural network design with new text data representations[J]. Journal of Big Data, 2017, 4: 7. DOI: 10.1186/s40537-017-0065-8
|
[16] |
高建军. 多径和海杂波干扰下的舰船ISAR成像及横向定标[D]. [博士论文], 哈尔滨工业大学, 2010.
Gao Jian-jun. ISAR ship imaging and cross-range scaling with multipath and sea clutter interference[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2010.
|
[1] | LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001 |
[2] | LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043 |
[3] | WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105 |
[4] | DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002 |
[5] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[6] | GONG Zhihua, LI Kaiming, DUAN Pengwei, CHEN Chunjiang. Attitude and Orbital Coupled Modeling and Micro-Doppler Characteristics Analysis of the Projectile with Initial Disturbances[J]. Journal of Radars, 2023, 12(4): 793-803. doi: 10.12000/JR23026 |
[7] | TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033 |
[8] | HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169 |
[9] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[10] | DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161 |
[11] | CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068 |
[12] | XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084 |
[13] | CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041 |
[14] | DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006 |
[15] | Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040 |
[16] | Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130 |
[17] | Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009 |
[18] | Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110 |
[19] | Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079 |
[20] | Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102 |
1. | YANG Yong,YANG Boyu. Overview of radar detection methods for low altitude targets in marine environments. Journal of Systems Engineering and Electronics. 2024(01): 1-13 . ![]() | |
2. | 陆源,宋杰,熊伟,陈小龙. 基于DB-YOLO的双基地雷达弱运动目标检测方法. 太赫兹科学与电子信息学报. 2024(02): 132-141 . ![]() | |
3. | 王伟,杜旭洋,杨志伟,吴凡. 基于无人艇的导航雷达目标检测跟踪算法. 系统工程与电子技术. 2024(05): 1561-1572 . ![]() | |
4. | 陈小龙,何肖阳,邓振华,关键,杜晓林,薛伟,苏宁远,王金豪. 雷达微弱目标智能化处理技术与应用. 雷达学报. 2024(03): 501-524 . ![]() | |
5. | 周涵楚,朱永忠,张玲玲,王志伟,徐军伟,谢文宣. 旋翼无人机目标雷达探测技术研究进展. 电讯技术. 2024(08): 1335-1345 . ![]() | |
6. | 吴巍,薛冰,刘丹丹. 基于Tri-feature训练的目标与海杂波鉴别算法. 系统工程与电子技术. 2024(09): 2935-2940 . ![]() | |
7. | 陈胜垚,胡晨康,程智勇,席峰,刘中. 基于残差单元与注意力门的非对称编解码海杂波抑制网络. 电子学报. 2024(08): 2628-2640 . ![]() | |
8. | 成怡,王阳. 基于SPWVD-STFT的海面弱目标检测方法. 东北大学学报(自然科学版). 2024(10): 1401-1408 . ![]() | |
9. | 陈佳音,郭山红,朱海锐,盛卫星,韩玉兵. 基于多特征融合的海面目标智能检测算法. 现代雷达. 2024(12): 24-30 . ![]() | |
10. | 郭勇,孙齐,杨立东. 基于SET和AlexNet的雷达动目标检测方法. 现代雷达. 2023(03): 43-50 . ![]() | |
11. | 秦天慈,王中训,黄勇,刘言,尉豪轩. 雷达恒虚警目标检测处理技术综述. 探测与控制学报. 2023(03): 1-11 . ![]() | |
12. | 罗迎,袁航,袁延鑫. 单频涡旋电磁波雷达旋转目标微动参数提取方法. 信号处理. 2023(09): 1587-1595 . ![]() | |
13. | 薛冰,吴巍. 基于卷积神经网络的海杂波数据分析与鉴别. 电子技术应用. 2023(11): 15-22 . ![]() | |
14. | 潘美艳,蔡兴雨,薛健. 基于时频谱图和CNN的雷达空中目标识别方法. 火控雷达技术. 2023(04): 16-22 . ![]() | |
15. | 谢跃雷,刘信,梁文斌. 基于权重不可知神经网络的旋翼无人机检测. 电讯技术. 2022(01): 46-53 . ![]() | |
16. | 李骁,施赛楠,董泽远,杨静. 基于时频域深度网络的海面小目标特征检测. 雷达科学与技术. 2022(02): 209-216+230 . ![]() | |
17. | 袁航,罗迎,李开明,陈怡君,张群. 基于涡旋电磁波雷达的人体目标步态精细识别. 兵工学报. 2022(05): 1167-1174 . ![]() | |
18. | 许述文,茹宏涛. 基于标签传播算法的海面漂浮小目标检测方法. 电子与信息学报. 2022(06): 2119-2126 . ![]() | |
19. | 柳林,孙毅,李万武. 基于CNN海上钻井平台检测模型的构建及训练算法分析. 测绘通报. 2022(07): 26-32+99 . ![]() | |
20. | 占伟杰,万显荣,易建新. 基于局部散射中心的近、远场微动回波时频分布特性的解析表达. 电子与信息学报. 2022(08): 2867-2877 . ![]() | |
21. | 王硕,孙梦轩,杨志晓,王辉,郑戍华. 基于涡旋电磁波雷达回波时频图像的动态手势识别. 火力与指挥控制. 2022(08): 109-115 . ![]() | |
22. | 陈小龙,牟效亁,关键. 对海雷达多维图像特征融合智能检测方法. 太赫兹科学与电子信息学报. 2022(10): 1006-1016 . ![]() | |
23. | 万显荣,谢德强,易建新,胡仕波,童云. 基于STFT谱图滑窗相消的微动杂波去除方法. 雷达学报. 2022(05): 794-804 . ![]() | |
24. | 张晨,叶舟,吕宇宙,方明,高永婵. 基于ResNet的智能恒虚警目标检测方法. 上海航天(中英文). 2022(05): 71-78 . ![]() | |
25. | 王磊,张启亮,翁明善. 基于改进YOLOv4算法的小型多旋翼无人机目标检测. 探测与控制学报. 2022(05): 125-131 . ![]() | |
26. | 施赛楠,董泽远,杨静,杨春娇. 基于时频图自主学习的海面小目标检测. 系统工程与电子技术. 2021(01): 33-41 . ![]() | |
27. | 易重辉,张建伟,钱江. 基于SSD的低空监视雷达目标检测. 湖南城市学院学报(自然科学版). 2021(02): 55-59 . ![]() | |
28. | 占伟杰,万显荣,易建新,谢德强,程丰,饶云华. 外辐射源雷达目标扇叶微多普勒效应实验研究. 系统工程与电子技术. 2021(06): 1468-1476 . ![]() | |
29. | 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 . ![]() | |
30. | 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 . ![]() | |
31. | 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 . ![]() | |
32. | 段鹏飞,李元昊,郭绍义,任继亭,王士鹏. 无人船航行环境信息感知技术综述. 浙江交通职业技术学院学报. 2021(04): 33-36+41 . ![]() | |
33. | 贺丰收,何友,刘准钆,徐从安. 卷积神经网络在雷达自动目标识别中的研究进展. 电子与信息学报. 2020(01): 119-131 . ![]() | |
34. | 赵俊龙,李伟,王泓霖,邹鲲. 基于深层神经网络的雷达波形设计. 空军工程大学学报(自然科学版). 2020(01): 52-57 . ![]() | |
35. | 陈小龙,张海,孙嘉辰,黄勇. 机载预警雷达网络化协同探测模式及性能分析. 太赫兹科学与电子信息学报. 2020(02): 215-221 . ![]() | |
36. | 曹林,李佳,张鑫怡,王东峰,付冲. 一种基于微波雷达回波信号的车型分类方法. 电讯技术. 2020(05): 542-548 . ![]() | |
37. | 李江,冯存前,王义哲,许旭光. 一种用于锥体目标微动分类的深度学习模型. 西安电子科技大学学报. 2020(03): 105-112 . ![]() | |
38. | 郭子薰,水鹏朗,白晓惠,许述文,李东宸. 海杂波中基于可控虚警K近邻的海面小目标检测. 雷达学报. 2020(04): 654-663 . ![]() | |
39. | 牟效乾,陈小龙,关键,周伟,刘宁波,董云龙. 基于INet的雷达图像杂波抑制和目标检测方法. 雷达学报. 2020(04): 640-653 . ![]() | |
40. | 许述文,白晓惠,郭子薰,水鹏朗. 海杂波背景下雷达目标特征检测方法的现状与展望. 雷达学报. 2020(04): 684-714 . ![]() | |
41. | 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . ![]() | |
42. | 袁航,倪嘉成,荣楠,罗迎. 基于单频涡旋电磁波雷达的人体目标步态精细识别. 空军工程大学学报(自然科学版). 2020(06): 39-45 . ![]() | |
43. | 黄川,李中余,张丽君,武俊杰,杨建宇. 无源多基雷达海面运动目标检测与定位方法. 信号处理. 2020(12): 2016-2023 . ![]() | |
44. | 董晓龙,杨晓峰,徐星欧,徐曦煜. 海洋参数星上快速处理方法及典型应用研究. 信号处理. 2020(12): 1979-1986 . ![]() | |
45. | 张卫东,刘笑成,韩鹏. 水上无人系统研究进展及其面临的挑战. 自动化学报. 2020(05): 847-857 . ![]() | |
46. | 黄裕. DSM-Forest算法对计算机多类数据学习分类性能的影响. 信息技术. 2019(05): 148-150+154 . ![]() | |
47. | 陈慧元,刘泽宇,郭炜炜,张增辉,郁文贤. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法. 雷达学报. 2019(03): 413-424 . ![]() | |
48. | 左磊,产秀秀,禄晓飞,李明. 基于空域联合时频分解的海面微弱目标检测方法. 雷达学报. 2019(03): 335-343 . ![]() | |
49. | 蒋千,吴昊,王燕宇. 机载多功能海上监视雷达系统设计与关键技术研究. 雷达学报. 2019(03): 303-317 . ![]() | |
50. | 丁昊,刘宁波,董云龙,陈小龙,关键. 雷达海杂波测量试验回顾与展望. 雷达学报. 2019(03): 281-302 . ![]() | |
51. | 张海,陈小龙,张财生,黄勇. 人工智能时代智能化海战模式. 科技导报. 2019(12): 86-91 . ![]() | |
52. | 何良,赵英海,王磊,胡仕友. 基于环状可变形卷积神经网络的相参雷达目标检测算法. 战术导弹技术. 2019(04): 93-99 . ![]() | |
53. | 李江,冯存前,王义哲,许旭光. 基于深度卷积神经网络的弹道目标微动分类. 空军工程大学学报(自然科学版). 2019(04): 97-104 . ![]() | |
54. | 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . ![]() | |
55. | 左磊,产秀秀,禄晓飞,李明. 时频域分解海面回波及慢速微弱目标检测. 西安电子科技大学学报. 2019(05): 84-90 . ![]() | |
56. | 李江,冯存前,王义哲,许旭光. 基于AlexNet-BiLSTM网络的锥体目标微动分类. 信号处理. 2019(11): 1835-1843 . ![]() | |
57. | 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 . ![]() |