Volume 6 Issue 2
May  2017
Turn off MathJax
Article Contents
Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
Citation: Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009

An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images

DOI: 10.12000/JR17009
Funds:  The National Natural Science Foundation of China (41501485)
  • Received Date: 2017-01-20
  • Rev Recd Date: 2017-03-05
  • Available Online: 2017-05-02
  • Publish Date: 2017-04-28
  • In the field of image processing using Synthetic Aperture Radar (SAR), aircraft detection is a challenging task. Conventional approaches always extract targets from the background of an image using image segmentation methods. Nevertheless, these methods mainly focus on pixel contrast and neglect the integrity of the target, which leads to locating the object inaccurately. In this study, we build a novel SAR aircraft detection framework. Compared to traditional methods, an improved saliency-based method is proposed to locate candidates coarsely and quickly in large scenes. This proposed method is verified to be more efficient compared with the sliding window method. Next, we design a convolutional neural network fitting in SAR images to accurately identify the candidates and obtain the final detection result. Moreover, to overcome the problem of limited available SAR data, we propose four data augmentation methods comprising translation, speckle noising, contrast enhancement, and small-angle rotation. Experimental results show that our framework achieves excellent performance on the high-resolution TerraSAR-X dataset.

     

  • loading
  • [1]
    El-Darymli K, McGuire P, Power D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J].Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598
    [2]
    Steenson B O. Detection performance of a mean-level threshold[J].IEEE Transactions on Aerospace and Electronic Systems, 1968, 4(4): 529–534.
    [3]
    Gandhi P P and Kassam S A. Analysis of CFAR processors in homogeneous background[J].IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427–445. doi: 10.1109/7.7185
    [4]
    Novak L M and Hesse S R. On the performance of order-statistics CFAR detectors[C]. IEEE 25th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, USA, Nov. 1991: 835–840.
    [5]
    Smith M E and Varshney P K. VI-CFAR: A novel CFAR algorithm based on data variability[C]. IEEE National Radar Conference, Syracuse, NY, May 1997: 263–268.
    [6]
    Ai Jia-qiu, Qi Xiang-yang, Yu Wei-dong, et al. A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR images[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 806–810. doi: 10.1109/LGRS.2010.2048697
    [7]
    di Bisceglie M and Galdi C. CFAR detection of extended objects in high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 833–843. doi: 10.1109/TGRS.2004.843190
    [8]
    Jung C H, Kwag Y K, and Song W Y. CFAR detection algorithm for ground target in heterogeneous clutter using high resolution SAR image[C]. 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, South Korea, Sep. 2011: 1–4.
    [9]
    Olson C F and Huttenlocher D P. Automatic target recognition by matching oriented edge pixels[J].IEEE Transactions on Image Processing, 1997, 6(1): 103–113. doi: 10.1109/83.552100
    [10]
    Kaplan L M. Improved SAR target detection via extended fractal features[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 436–451. doi: 10.1109/7.937460
    [11]
    Sandirasegaram N M. Spot SAR ATR using wavelet features and neural network classifier[R]. Defence Research and Development Canada Ottawa (Ontario), 2005.
    [12]
    Tan Yi-hua, Li Qing-yun, Li Yan-sheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J].Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071
    [13]
    Jao J K, Lee C E, and Ayasli S. Coherent spatial filtering for SAR detection of stationary targets[J].IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 614–626. doi: 10.1109/7.766942
    [14]
    Zhao Q and Principe J C. Support vector machines for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643–654. doi: 10.1109/7.937475
    [15]
    Sun Yi-jun, Liu Zhi-peng, Todorovic S, et al. Adaptive boosting for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 112–125. doi: 10.1109/TAES.2007.357120
    [16]
    Keydel E R, Lee S W, and Moore J T. MSTAR extended operating conditions: A tutorial[C]. Proc. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, FL, Apr. 1996: 228–242.
    [17]
    Krizhevsky A, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems, South Lake Tahoe, Nevada, USA, Dec. 2012: 1097–1105.
    [18]
    Ding Jun, Chen Bo, Liu Hong-wei, et al. Convolutional neural network with data augmentation for SAR target recognition[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368.
    [19]
    Chen Si-zhe, Wang Hai-peng, Xu Feng, et al. Target classification using the deep convolutional networks for SAR images[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
    [20]
    Diao Wen-hui, Sun Xian, Zheng Xin-wei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141. doi: 10.1109/LGRS.2015.2498644
    [21]
    Chen Jie-hong, Zhang Bo, and Wang Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845
    [22]
    Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [23]
    Glorot X, Bordes A, and Bengio Y. Deep sparse rectifier neural networks[C]. 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 2011: 315–323.
    [24]
    Qian Ning. On the momentum term in gradient descent learning algorithms[J].Neural Networks, 1999, 12(1): 145–151. doi: 10.1016/S0893-6080(98)00116-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(6831) PDF downloads(1916) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint