Turn off MathJax
Article Contents
JIN Biao, SUN Kangsheng, WU Hao, et al. 3D point cloud from millimeter-wave radar for human action recognition: dataset and method[J]. Journal of Radars, 2025, 14(1): 73–89. doi: 10.12000/JR24195
Citation: JIN Biao, SUN Kangsheng, WU Hao, et al. 3D point cloud from millimeter-wave radar for human action recognition: dataset and method[J]. Journal of Radars, 2025, 14(1): 73–89. doi: 10.12000/JR24195

3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method

DOI: 10.12000/JR24195
Funds:  The National Natural Science Foundation of China (61701416), Natural Science Foundation of Jiangsu Province of China (BK20211341), Key Research and Development Project of Henan Province (241111212500), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_2605)
More Information
  • Corresponding author: JIN Biao, biaojin@just.edu.cn
  • Received Date: 2024-09-29
  • Rev Recd Date: 2025-01-04
  • Available Online: 2025-01-07
  • Millimeter-wave radar is increasingly being adopted for smart home systems, elder care, and surveillance monitoring, owing to its adaptability to environmental conditions, high resolution, and privacy-preserving capabilities. A key factor in effectively utilizing millimeter-wave radar is the analysis of point clouds, which are essential for recognizing human postures. However, the sparse nature of these point clouds poses significant challenges for accurate and efficient human action recognition. To overcome these issues, we present a 3D point cloud dataset tailored for human actions captured using millimeter-wave radar (mmWave-3DPCHM-1.0). This dataset is enhanced with advanced data processing techniques and cutting-edge human action recognition models. Data collection is conducted using Texas Instruments (TI)’s IWR1443-ISK and Vayyar's vBlu radio imaging module, covering 12 common human actions, including walking, waving, standing, and falling. At the core of our approach is the point EdgeConv and transformer (PETer) network, which integrates edge convolution with transformer models. For each 3D point cloud frame, PETer constructs a locally directed neighborhood graph through edge convolution to extract spatial geometric features effectively. The network then leverages a series of transformer encoding models to uncover temporal relationships across multiple point cloud frames. Extensive experiments reveal that the PETer network achieves exceptional recognition rates of 98.77% on the TI dataset and 99.51% on the Vayyar dataset, outperforming the traditional optimal baseline model by approximately 5%. With a compact model size of only 1.09 MB, PETer is well-suited for deployment on edge devices, providing an efficient solution for real-time human action recognition in resource-constrained environments.

     

  • loading
  • [1]
    AHMAD T, JIN Lianwen, ZHANG Xin, et al. Graph convolutional neural network for human action recognition: a comprehensive survey[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 128–145. doi: 10.1109/TAI.2021.3076974.
    [2]
    金添, 宋永坤, 戴永鹏, 等. UWB-HA4D-1.0: 超宽带雷达人体动作四维成像数据集[J]. 雷达学报, 2022, 11(1): 27–39. doi: 10.12000/JR22008.

    JIN Tian, SONG Yongkun, DAI Yongpeng, et al. UWB-HA4D-1.0: An ultra-wideband radar human activity 4D imaging dataset[J]. Journal of Radars, 2022, 11(1): 27–39. doi: 10.12000/JR22008.
    [3]
    ANGUITA D, GHIO A, ONETO L, et al. A public domain dataset for human activity recognition using smartphones[C]. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 2013: 437–442.
    [4]
    SOOMRO K, ZAMIR A R, and SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[R]. CRCV-TR-12-01, 2012.
    [5]
    AMIRI S M, POURAZAD M T, NASIOPOULOS P, et al. Non-intrusive human activity monitoring in a smart home environment[C]. 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, 2013: 606–610. doi: 10.1109/HealthCom.2013.6720748.
    [6]
    BLOOM V, MAKRIS D, and ARGYRIOU V. G3D: A gaming action dataset and real time action recognition evaluation framework[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 7–12. doi: 10.1109/CVPRW.2012.6239175.
    [7]
    LIU Jun, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684–2701. doi: 10.1109/TPAMI.2019.2916873.
    [8]
    RAEIS H, KAZEMI M, and SHIRMOHAMMADI S. Human activity recognition with device-free sensors for well-being assessment in smart homes[J]. IEEE Instrumentation & Measurement Magazine, 2021, 24(6): 46–57. doi: 10.1109/MIM.2021.9513637.
    [9]
    丁传威, 刘芷麟, 张力, 等. 基于MIMO雷达成像图序列的切向人体姿态识别方法[J]. 雷达学报(中英文), 2024, 待出版. doi: 10.12000/JR24116.

    DING Chuanwei, LIU Zhilin, ZHANG Li, et al. Tangential human posture recognition with sequential images based on MIMO radar[J]. Journal of Radar, 2024, in press. doi: 10.12000/JR24116.
    [10]
    金添, 何元, 李新羽, 等. 超宽带雷达人体行为感知研究进展[J]. 电子与信息学报, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044.

    JIN Tian, HE Yuan, LI Xinyu, et al. Advances in Human Activity Sensing Using Ultra-Wide Band Radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044.
    [11]
    JIN Biao, MA Xiao, HU Bojun, et al. Gesture-mmWAVE: Compact and accurate millimeter-wave radar-based dynamic gesture recognition for embedded devices[J]. IEEE Transactions on Human-Machine Systems, 2024, 54(3): 337–347. doi: 10.1109/THMS.2024.3385124.
    [12]
    ZHANG Yushu, JI Junhao, WEN Wenying, et al. Understanding visual privacy protection: A generalized framework with an instance on facial privacy[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 5046–5059. doi: 10.1109/TIFS.2024.3389572.
    [13]
    HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845–860. doi: 10.1109/TMTT.2011.2178427.
    [14]
    JIN Biao, MA Xiao, ZHANG Zhenkai, et al. Interference-robust millimeter-wave radar-based dynamic hand gesture recognition using 2-D CNN-transformer networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 2741–2752. doi: 10.1109/JIOT.2023.3293092.
    [15]
    JIN Biao, PENG Yu, KUANG Xiaofei, et al. Robust dynamic hand gesture recognition based on millimeter wave radar using atten-TsNN[J]. IEEE Sensors Journal, 2022, 22(11): 10861–10869. doi: 10.1109/JSEN.2022.3170311.
    [16]
    SENGUPTA A, JIN Feng, ZHANG Renyuan, et al. mm-Pose: Real-time human skeletal posture estimation using mmWave radars and CNNs[J]. IEEE Sensors Journal, 2020, 20(17): 10032–10044. doi: 10.1109/JSEN.2020.2991741.
    [17]
    YU Zheqi, TAHA A, TAYLOR W, et al. A radar-based human activity recognition using a novel 3-D point cloud classifier[J]. IEEE Sensors Journal, 2022, 22(19): 18218–18227. doi: 10.1109/JSEN.2022.3198395.
    [18]
    QI C R, SU Hao, MO Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
    [19]
    Qi C. R., Yi L., Su H. et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
    [20]
    FAN Hehe, YANG Yi, and KANKANHALLI M. Point 4D transformer networks for Spatio-temporal modeling in point cloud videos[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 14199–14208. doi: 10.1109/CVPR46437.2021.01398.
    [21]
    PÜTZ S, WIEMANN T, and HERTZBERG J. Tools for visualizing, annotating and storing triangle meshes in ROS and RViz[C]. 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 2019: 1–6. doi: 10.1109/ECMR.2019.8870953.
    [22]
    DENG Dingsheng. DBSCAN clustering algorithm based on density[C]. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 2020: 949–953. doi: 10.1109/IFEEA51475.2020.00199.
    [23]
    LIN Y P, YEH Y M, CHOU Yuchen, et al. Attention EdgeConv for 3D point cloud classification[C]. 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Tokyo, Japan, 2021: 2018–2022.
    [24]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, 2020: 1–11.
    [25]
    HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. https://doi.org/10.48550/arXiv.1606.08415, 2016.
    [26]
    LI Xing, HUANG Qian, WANG Zhijian, et al. Real-time 3-D human action recognition based on hyperpoint sequence[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8933–8942. doi: 10.1109/TII.2022.3223225.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(77) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint