Xu Zhen, Wang Robert, Li Ning, et al.. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Citation: JIN Biao, SUN Kangsheng, WU Hao, et al. 3D point cloud from millimeter-wave radar for human action recognition: Dataset and method[J]. Journal of Radars, 2025, 14(1): 73–90. doi: 10.12000/JR24195

3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method

DOI: 10.12000/JR24195 CSTR: 32380.14.JR24195
Funds:  The National Natural Science Foundation of China (61701416), Natural Science Foundation of Jiangsu Province of China (BK20211341), Key Research and Development Project of Henan Province (241111212500), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_2605)
More Information
  • Corresponding author: JIN Biao, biaojin@just.edu.cn
  • Received Date: 2024-09-29
  • Rev Recd Date: 2025-01-04
  • Available Online: 2025-01-07
  • Publish Date: 2025-01-15
  • Millimeter-wave radar is increasingly being adopted for smart home systems, elder care, and surveillance monitoring, owing to its adaptability to environmental conditions, high resolution, and privacy-preserving capabilities. A key factor in effectively utilizing millimeter-wave radar is the analysis of point clouds, which are essential for recognizing human postures. However, the sparse nature of these point clouds poses significant challenges for accurate and efficient human action recognition. To overcome these issues, we present a 3D point cloud dataset tailored for human actions captured using millimeter-wave radar (mmWave-3DPCHM-1.0). This dataset is enhanced with advanced data processing techniques and cutting-edge human action recognition models. Data collection is conducted using Texas Instruments (TI)’s IWR1443-ISK and Vayyar’s vBlu radio imaging module, covering 12 common human actions, including walking, waving, standing, and falling. At the core of our approach is the Point EdgeConv and Transformer (PETer) network, which integrates edge convolution with transformer models. For each 3D point cloud frame, PETer constructs a locally directed neighborhood graph through edge convolution to extract spatial geometric features effectively. The network then leverages a series of Transformer encoding models to uncover temporal relationships across multiple point cloud frames. Extensive experiments reveal that the PETer network achieves exceptional recognition rates of 98.77% on the TI dataset and 99.51% on the Vayyar dataset, outperforming the traditional optimal baseline model by approximately 5%. With a compact model size of only 1.09 MB, PETer is well-suited for deployment on edge devices, providing an efficient solution for real-time human action recognition in resource-constrained environments.

     

  • [1]
    AHMAD T, JIN Lianwen, ZHANG Xin, et al. Graph convolutional neural network for human action recognition: A comprehensive survey[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 128–145. doi: 10.1109/TAI.2021.3076974.
    [2]
    金添, 宋永坤, 戴永鹏, 等. UWB-HA4D-1.0: 超宽带雷达人体动作四维成像数据集[J]. 雷达学报, 2022, 11(1): 27–39. doi: 10.12000/JR22008.

    JIN Tian, SONG Yongkun, DAI Yongpeng, et al. UWB-HA4D-1.0: An ultra-wideband radar human activity 4D imaging dataset[J]. Journal of Radars, 2022, 11(1): 27–39. doi: 10.12000/JR22008.
    [3]
    ANGUITA D, GHIO A, ONETO L, et al. A public domain dataset for human activity recognition using smartphones[C]. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 2013: 437–442.
    [4]
    SOOMRO K, ZAMIR A R, and SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[R]. CRCV-TR-12-01, 2012.
    [5]
    AMIRI S M, POURAZAD M T, NASIOPOULOS P, et al. Non-intrusive human activity monitoring in a smart home environment[C]. 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, 2013: 606–610. doi: 10.1109/HealthCom.2013.6720748.
    [6]
    BLOOM V, MAKRIS D, and ARGYRIOU V. G3D: A gaming action dataset and real time action recognition evaluation framework[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 7–12. doi: 10.1109/CVPRW.2012.6239175.
    [7]
    LIU Jun, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684–2701. doi: 10.1109/TPAMI.2019.2916873.
    [8]
    RAEIS H, KAZEMI M, and SHIRMOHAMMADI S. Human activity recognition with device-free sensors for well-being assessment in smart homes[J]. IEEE Instrumentation & Measurement Magazine, 2021, 24(6): 46–57. doi: 10.1109/MIM.2021.9513637.
    [9]
    丁传威, 刘芷麟, 张力, 等. 基于MIMO雷达成像图序列的切向人体姿态识别方法[J]. 雷达学报(中英文), 2025, 14(1): 151–167. doi: 10.12000/JR24116.

    DING Chuanwei, LIU Zhilin, ZHANG Li, et al. Tangential human posture recognition with sequential images based on MIMO radar[J]. Journal of Radar, 2025, 14(1): 151–167. doi: 10.12000/JR24116.
    [10]
    金添, 何元, 李新羽, 等. 超宽带雷达人体行为感知研究进展[J]. 电子与信息学报, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044.

    JIN Tian, HE Yuan, LI Xinyu, et al. Advances in human activity sensing using ultra-wide band radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044.
    [11]
    JIN Biao, MA Xiao, HU Bojun, et al. Gesture-mmWAVE: Compact and accurate millimeter-wave radar-based dynamic gesture recognition for embedded devices[J]. IEEE Transactions on Human-Machine Systems, 2024, 54(3): 337–347. doi: 10.1109/THMS.2024.3385124.
    [12]
    ZHANG Yushu, JI Junhao, WEN Wenying, et al. Understanding visual privacy protection: A generalized framework with an instance on facial privacy[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 5046–5059. doi: 10.1109/TIFS.2024.3389572.
    [13]
    HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845–860. doi: 10.1109/TMTT.2011.2178427.
    [14]
    JIN Biao, MA Xiao, ZHANG Zhenkai, et al. Interference-robust millimeter-wave radar-based dynamic hand gesture recognition using 2-D CNN-transformer networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 2741–2752. doi: 10.1109/JIOT.2023.3293092.
    [15]
    JIN Biao, PENG Yu, KUANG Xiaofei, et al. Robust dynamic hand gesture recognition based on millimeter wave radar using atten-TsNN[J]. IEEE Sensors Journal, 2022, 22(11): 10861–10869. doi: 10.1109/JSEN.2022.3170311.
    [16]
    SENGUPTA A, JIN Feng, ZHANG Renyuan, et al. mm-Pose: Real-time human skeletal posture estimation using mmWave radars and CNNs[J]. IEEE Sensors Journal, 2020, 20(17): 10032–10044. doi: 10.1109/JSEN.2020.2991741.
    [17]
    YU Zheqi, TAHA A, TAYLOR W, et al. A radar-based human activity recognition using a novel 3-D point cloud classifier[J]. IEEE Sensors Journal, 2022, 22(19): 18218–18227. doi: 10.1109/JSEN.2022.3198395.
    [18]
    QI C R, SU Hao, MO Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
    [19]
    QI C R, YI L, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
    [20]
    FAN Hehe, YANG Yi, and KANKANHALLI M. Point 4D transformer networks for Spatio-temporal modeling in point cloud videos[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 14199–14208. doi: 10.1109/CVPR46437.2021.01398.
    [21]
    PÜTZ S, WIEMANN T, and HERTZBERG J. Tools for visualizing, annotating and storing triangle meshes in ROS and RViz[C]. 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 2019: 1–6. doi: 10.1109/ECMR.2019.8870953.
    [22]
    DENG Dingsheng. DBSCAN clustering algorithm based on density[C]. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 2020: 949–953. doi: 10.1109/IFEEA51475.2020.00199.
    [23]
    LIN Y P, YEH Y M, CHOU Yuchen, et al. Attention EdgeConv for 3D point cloud classification[C]. 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Tokyo, Japan, 2021: 2018–2022.
    [24]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, 2020: 1–11.
    [25]
    HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. https://doi.org/10.48550/arXiv.1606.08415, 2016.
    [26]
    LI Xing, HUANG Qian, WANG Zhijian, et al. Real-time 3-D human action recognition based on hyperpoint sequence[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8933–8942. doi: 10.1109/TII.2022.3223225.
  • Relative Articles

    [1]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [2]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [3]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [4]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [5]Liu Qiyong, Zhang Qun, Hong Wen, Su Linghua, Liang Jia. DLSLA 3D SAR Motion Error Compensation and Imaging Method Based on Parameter Estimation[J]. Journal of Radars, 2018, 7(6): 730-739. doi: 10.12000/JR18107
    [6]Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082
    [7]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [8]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [9]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [10]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [11]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [12]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [13]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [14]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [15]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [16]Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English)[J]. Journal of Radars, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [17]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [18]Wu Yi-rong, Hong Wen, Zhang Bing-chen, Jiang Cheng-long, Zhang Zhe, Zhao Yao. Current Developments of Sparse Microwave Imaging[J]. Journal of Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [19]Zhao Yao, Zhang Bing-chen, Hong Wen, Wu Yi-rong. RIPless Based Radar Waveform Analysis in Sparse Microwave Imaging[J]. Journal of Radars, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [20]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
  • Cited by

    Periodical cited type(7)

    1. 黄钟泠,吴冲,姚西文,王立鹏,韩军伟. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用. 雷达学报. 2024(02): 331-344 . 本站查看
    2. 丁柏圆,周春雨. 结合三维电磁散射模型和深度学习的SAR目标识别框架设计. 航天电子对抗. 2024(02): 34-38+64 .
    3. 张旭,徐丰,金亚秋. 典型几何基元的高频散射建模方法梳理. 雷达学报. 2022(01): 126-143 . 本站查看
    4. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 .
    5. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    6. 陆金文,闫华,殷红成,张磊,董纯柱. 用于三维散射中心SBR建模的边缘绕射修正. 西安电子科技大学学报. 2021(02): 117-124+189 .
    7. 陆金文,闫华,张磊,殷红成. 基于弹跳射线技术的三维GTD模型构建方法. 系统工程与电子技术. 2021(08): 2028-2036 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 68.3 %META: 68.3 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 0.3 %其他: 0.3 %Cassino: 0.1 %Cassino: 0.1 %China: 1.1 %China: 1.1 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %[]: 0.3 %[]: 0.3 %三亚: 0.0 %三亚: 0.0 %上海: 0.8 %上海: 0.8 %上海市: 0.0 %上海市: 0.0 %东营: 0.0 %东营: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.8 %北京: 15.8 %北京市: 0.0 %北京市: 0.0 %北海: 0.0 %北海: 0.0 %南京: 1.0 %南京: 1.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %宁夏回族自治区银川: 0.0 %宁夏回族自治区银川: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.0 %安康: 0.0 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.1 %宿迁: 0.1 %崇左: 0.0 %崇左: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.0 %常州: 0.0 %广州: 0.6 %广州: 0.6 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %张家口: 1.9 %张家口: 1.9 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %杭州: 1.8 %杭州: 1.8 %武汉: 0.2 %武汉: 0.2 %汉中: 0.0 %汉中: 0.0 %汉中市: 0.0 %汉中市: 0.0 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.0 %温州: 0.0 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国德克萨斯沃思堡: 0.0 %美国德克萨斯沃思堡: 0.0 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.0 %苏州: 0.0 %莫斯科: 0.0 %莫斯科: 0.0 %衡水: 0.0 %衡水: 0.0 %西宁: 37.2 %西宁: 37.2 %西安: 1.0 %西安: 1.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.5 %郑州: 1.5 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他CassinoChinaIndiaTaiwan, China[]三亚上海上海市东营临汾丹东丽水佛山保定兰州内江内蒙古自治区呼和浩特凤凰城加利福尼亚包头北京北京市北海南京南昌南通台北台州合肥呼和浩特哈尔滨嘉兴大连天津宁夏回族自治区银川宁波安康宣城宿迁崇左巴中常州广州库比蒂诺张家口张家口市惠州成都扬州新乡无锡昆明晋城杭州武汉汉中汉中市沈阳济南淮南深圳深圳市温州渭南湖州湘潭漯河濮阳烟台焦作玉林盐城石家庄石家庄市美国伊利诺斯芝加哥美国德克萨斯沃思堡芒廷维尤芜湖芝加哥苏州莫斯科衡水西宁西安贵港贵阳达州运城连云港郑州重庆银川长沙阳泉阿什本青岛香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1659) PDF downloads(386) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint