Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
Citation: ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and High-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111

High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network

DOI: 10.12000/JR19111
Funds:  The National Natural Science Foundation of China (61571099, 61501098, 61671113), The National Key R&D Program of China (2017YFB0502700)
More Information
  • Corresponding author: ZHANG Xiaoling, xlzhang@uestc.edu.cn
  • Received Date: 2019-12-16
  • Rev Recd Date: 2019-12-23
  • Available Online: 2020-01-02
  • Publish Date: 2019-12-01
  • With the development of artificial intelligence, Synthetic-Aperture Radar (SAR) ship detection using deep learning technology can effectively avoid traditionally complex feature design and thereby greatly improve detection accuracy. However, most existing detection models often improve detection accuracy at the expense of detection speed that limits some real-time applications of SAR such as emergency military deployment, rapid maritime rescue, and real-time marine environmental monitoring. To solve this problem, a high-speed and high-accuracy SAR ship detection method called SARShipNet-20 based on a Depthwise Separable Convolution Neural Network (DS-CNN) has been proposed in this paper, that replaces the Traditional Convolution Neural Network (T-CNN) and combines Channel Attention (CA) and Spatial Attention (SA). As a result, high-speed and high-accuracy SAR ship detection can be simultaneously achieved. This method has certain practical significance in the field of real-time SAR application, and its lightweight model is helpful for future FPGA or DSP hardware transplantation.

     

  • [1]
    ZHANG Tianwen and ZHANG Xiaoling. High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11(10): 1206. doi: 10.3390/rs11101206
    [2]
    ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11(21): 2483. doi: 10.3390/rs11212483
    [3]
    GAO Gui. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557–561. doi: 10.1109/LGRS.2010.2090492
    [4]
    AN Wentao, XIE Chunhua, and YUAN Xinzhe. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585–4595. doi: 10.1109/TGRS.2013.2282820
    [5]
    HOU Biao, CHEN Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 811–815. doi: 10.1109/LGRS.2014.2362955
    [6]
    YIN Kuiying, JIN Lin, ZHANG Changchun, et al. A method for automatic target recognition using shadow contour of SAR image[J]. IETE Technical Review, 2013, 30(4): 313–323. doi: 10.4103/0256-4602.116721
    [7]
    JIANG Shaofeng, WANG Chao, ZHANG Bo, et al. Ship detection based on feature confidence for high resolution SAR images[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6844–6847. doi: 10.1109/IGARSS.2012.6352591.
    [8]
    WANG Shigang, WANG Min, YANG Shuyuan, et al. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 351–362. doi: 10.1109/TGRS.2016.2606481
    [9]
    WANG Chonglei, BI Funkun, CHEN Liang, et al. A novel threshold template algorithm for ship detection in high-resolution SAR images[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 100–103. doi: 10.1109/IGARSS.2016.7729016.
    [10]
    ZHU Jiwei, QIU Xiaolan, PAN Zongxu, et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 222–226. doi: 10.1109/LGRS.2016.2635699
    [11]
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
    [12]
    李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197.

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197.
    [13]
    CHENG Mingming, LIU Yun, LIN Wenyan, et al. BING: Binarized normed gradients for objectness estimation at 300fps[J]. Computational Visual Media, 2019, 5(1): 3–20. doi: 10.1007/s41095-018-0120-1
    [14]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556v1, 2014.
    [15]
    李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09
    [16]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17]
    杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41(9): 1990–1997. doi: 10.3969/j.issn.1001-506X.2019.09.11

    YANG Long, SU Juan, LI Xiang. Ship detection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(9): 1990–1997. doi: 10.3969/j.issn.1001-506X.2019.09.11
    [18]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [19]
    胡昌华, 陈辰, 何川, 等. 基于深度卷积神经网络的SAR图像舰船小目标检测[J]. 中国惯性技术学报, 2019, 27(3): 397–405, 414. doi: 10.13695/j.cnki.12-1222/o3.2019.03.018

    HU Changhua, CHEN Chen, HE Chuan, et al. Ship small target detection based on deep convolution neural network in SAR image[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 397–405, 414. doi: 10.13695/j.cnki.12-1222/o3.2019.03.018
    [20]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
    [21]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [22]
    SIFRE L. Rigid-motion scattering for image classification[D]. [Ph.D. dissertation], Ecole Polytechnique, CMAP, 2014.
    [23]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. DOI: 10.1007/978-3-030-01234-2_1.
    [24]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [25]
    HUBEL D H and WIESEL T N. Receptive fields of single neurones in the cat’s striate cortex[J]. The Journal of Physiology, 1959, 148(3): 574–591. doi: 10.1113/jphysiol.1959.sp006308
    [26]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [27]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1800–1807. doi: 10.1109/CVPR.2017.195.
    [28]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [29]
    REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
    [30]
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, French, 2015: 448–456.
    [31]
    MANASWI N K. Understanding and Working with Keras[M]. MANASWI N K. Deep Learning with Applications Using Python. Apress, Berkeley, CA: Springer, 2018: 31–43.
    [32]
    ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org[EB/OL]. https://www.bibsonomy.org/bibtex/2ba528cb1d5505ae48100cfc940c5fc3, 2015.
    [33]
    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
    [34]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
    [35]
    DAI Jifeng, HE Kaiming, and SUN Jian. R-FCN: Object detection via region-based fully convolutional networks[J]. arXiv: 1605.06409v2, 2016.
    [36]
    HE Kaiming, GIRSHICK R, and DOLLÁR P. Rethinking ImageNet pre-training[J]. arXiv: 1811.08883, 2018.
    [37]
    CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988
    [38]
    孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
  • Relative Articles

    [1]WANG Bohong, SHEN Biao, MU Wenxing, LIU Tao. Research on Super-resolution Methods for Radar Targets Based on Bat-inspired Spectrogram Correlation and Transformation Models[J]. Journal of Radars, 2025, 14(2): 293-308. doi: 10.12000/JR24239
    [2]GUO Zhongyi, WANG Yanzhe, WANG Yunlai, GUO Kai. Research Advances on the Rotational Doppler Effect of Vortex Electromagnetic Waves[J]. Journal of Radars, 2021, 10(5): 725-739. doi: 10.12000/JR21109
    [3]PEI Jiazheng, HUANG Yong, CHEN Baoxin, GUAN Jian, CAI Mi, CHEN Xiaolong. Long Time Coherent Integration Method Based on Combining Pulse Compression and Radon-Fourier Transform[J]. Journal of Radars, 2021, 10(6): 956-969. doi: 10.12000/JR21068
    [4]WEI Wei, ZHU Daiyin, WU Di. Wavenumber Domain Algorithm Based on the Principle of Chirp Scaling for SAR Imaging[J]. Journal of Radars, 2020, 9(2): 354-362. doi: 10.12000/JR19112
    [5]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [6]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [7]Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027
    [8]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [9]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [10]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [11]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [12]Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013
    [13]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [14]Tian Rui-qi, Bao Qing-long, Wang Ding-he, Chen Zeng-ping. An Algorithm for Target Parameter Estimation Based on Fractional Fourier and Keystone Transforms[J]. Journal of Radars, 2014, 3(5): 511-517. doi: 10.3724/SP.J.1300.2014.14058
    [15]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [16]Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036
    [17]Guan Xin, Zhong Li-hua, Hu Dong-hui, Ding Chi-biao. A Compensation Algorithm Based on RSPWVD-Hough Transform for Doppler Expansion in Passive Radar[J]. Journal of Radars, 2013, 2(4): 430-438. doi: 10.3724/SP.J.1300.2013.13073
    [18]Deng Dong-hu, Zhang Qun, Luo Ying, Li Song, Zhu Ren-Fei. Resolution and Micro-Doppler Effect in Bi-ISAR System (in English)[J]. Journal of Radars, 2013, 2(2): 152-167. doi: 10.3724/SP.J.1300.2013.13039
    [19]Zheng Jin, You Hong-jian. Change Detection with SAR Images Based on Radon Transform and Jeffrey Divergence[J]. Journal of Radars, 2012, 1(2): 182-189. doi: 10.3724/SP.J.1300.2012.10068
    [20]Yu Bin-bin, Liu Chang, Wang Yan-fei. A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR[J]. Journal of Radars, 2012, 1(1): 69-75. doi: 10.3724/SP.J.1300.2012.20005
  • Cited by

    Periodical cited type(6)

    1. 王纪平,刘衍琦,邓钱钰,郭淑婷,毛新华. 基于PAST的毫米波雷达MIMO阵列幅相误差校正算法. 信号处理. 2024(09): 1633-1647 .
    2. 宁宝俊. 毫米波雷达在斜拉桥索力监测中的应用. 西部交通科技. 2024(07): 157-160 .
    3. 张春杰,陈奇,赵佳琦. 基于注意力机制CNN-LSTM的毫米波雷达点云特征数据预测生成. 电讯技术. 2024(11): 1718-1725 .
    4. 耿同乐. 电流反馈在毫米波雷达信号处理中的应用. 集成电路应用. 2024(11): 26-27 .
    5. 于丹阳,杜磊. 一种基于快速迭代自适应算法的毫米波雷达波达角高精度测量方法. 计量科学与技术. 2024(11): 3-9+21 .
    6. 孙航,张路,季国田. 智能网联汽车标准体系及重点标准研究与展望. 汽车安全与节能学报. 2024(06): 795-812 .

    Other cited types(29)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 59.9 %META: 59.9 %PDF: 9.3 %PDF: 9.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 2.2 %其他: 2.2 %Central District: 0.0 %Central District: 0.0 %China: 0.3 %China: 0.3 %Herndon: 0.0 %Herndon: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Malvern: 0.0 %Malvern: 0.0 %North Point: 0.1 %North Point: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.4 %[]: 0.4 %三亚: 0.1 %三亚: 0.1 %三明: 0.1 %三明: 0.1 %上海: 3.0 %上海: 3.0 %东京: 0.2 %东京: 0.2 %东京都: 0.0 %东京都: 0.0 %东莞: 0.3 %东莞: 0.3 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %九江: 0.0 %九江: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 10.5 %北京: 10.5 %北海: 0.0 %北海: 0.0 %十堰: 0.0 %十堰: 0.0 %华沙: 0.1 %华沙: 0.1 %南京: 2.1 %南京: 2.1 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.9 %台北: 0.9 %台州: 0.0 %台州: 0.0 %合肥: 0.5 %合肥: 0.5 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大克罗伊茨: 0.6 %大克罗伊茨: 0.6 %大连: 0.2 %大连: 0.2 %天津: 1.2 %天津: 1.2 %太原: 0.4 %太原: 0.4 %威海: 0.4 %威海: 0.4 %宁波: 0.1 %宁波: 0.1 %安山: 0.1 %安山: 0.1 %安康: 0.3 %安康: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.2 %宣城: 0.2 %宿州: 0.0 %宿州: 0.0 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广元: 0.0 %广元: 0.0 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开普敦: 0.1 %开普敦: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 1.8 %成都: 1.8 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.0 %抚顺: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %昌迪加尔: 0.0 %昌迪加尔: 0.0 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杜塞尔多夫: 0.0 %杜塞尔多夫: 0.0 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %格林菲尔德: 0.0 %格林菲尔德: 0.0 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %榆林: 0.3 %榆林: 0.3 %武汉: 2.8 %武汉: 2.8 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河内: 0.1 %河内: 0.1 %泉州: 0.0 %泉州: 0.0 %法兰克福: 0.1 %法兰克福: 0.1 %泰州: 0.0 %泰州: 0.0 %泰米尔纳德: 0.3 %泰米尔纳德: 0.3 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %海口: 0.0 %海口: 0.0 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 1.7 %深圳: 1.7 %清远: 0.0 %清远: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.8 %漯河: 0.8 %烟台: 0.3 %烟台: 0.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.1 %纳什维尔: 0.1 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.5 %绍兴: 0.5 %绵阳: 0.2 %绵阳: 0.2 %胡志明: 0.1 %胡志明: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 32.6 %芒廷维尤: 32.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蒙彼利埃: 0.0 %蒙彼利埃: 0.0 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 9.3 %西宁: 9.3 %西安: 2.1 %西安: 2.1 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.1 %赣州: 0.1 %赤峰: 0.0 %赤峰: 0.0 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %遵义: 0.1 %遵义: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 1.1 %长沙: 1.1 %随州: 0.0 %随州: 0.0 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.4 %青岛: 0.4 %韦斯特罗斯: 0.0 %韦斯特罗斯: 0.0 %韦科: 0.1 %韦科: 0.1 %首尔: 0.0 %首尔: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.0 %驻马店: 0.0 %黄冈: 0.1 %黄冈: 0.1 %黄山: 0.0 %黄山: 0.0 %黄石: 0.3 %黄石: 0.3 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaHerndonKao-sungMalvernNorth PointSan LorenzoSeattle[]三亚三明上海东京东京都东莞中卫临汾临沂丹东九江伊利诺伊州伦敦佛山兰州兰辛凤凰城北京北海十堰华沙南京南充南昌南通卡拉奇厦门台北台州合肥吉安呼和浩特咸阳哈密哈尔滨哥伦布唐山嘉兴大克罗伊茨大连天津太原威海宁波安山安康宝鸡宣城宿州岳阳常州常德广元广州库比蒂诺廊坊开普敦张家口张家界徐州德里怀化成都扬州抚顺揭阳新乡无锡昆明昌迪加尔晋城朝阳杜塞尔多夫杭州枣庄格兰特县格林菲尔德桂林梅州榆林武汉汕头沈阳沧州河内泉州法兰克福泰州泰米尔纳德泸州洛阳济南海口淄博淮南淮安深圳清远温州渭南湖州滁州漯河烟台珠海石家庄秦皇岛纳什维尔纽约绍兴绵阳胡志明舟山芒廷维尤芝加哥苏州莫斯科葫芦岛蒙彼利埃衡阳衢州西宁西安许昌诺沃克贵阳赣州赤峰赫尔辛基达州运城遵义邢台邯郸郑州鄂州重庆镇江长春长沙随州雷德蒙德青岛韦斯特罗斯韦科首尔首尔特别香港香港特别行政区马鞍山驻马店黄冈黄山黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(7536) PDF downloads(676) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint