Citation: | HUANG Yan, ZHANG Hui, LAN Lyuhongkang, et al. Overview of signal processing techniques for automotive millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 923–970. doi: 10.12000/JR23119 |
[1] |
黄乐平, 陈旭东. 4D毫米波雷达: 智驾普及的新路径[EB/OL]. https://xueqiu.com/3161724413/247489207, 2023.
HUANG Leping and CHEN Xudong. 4D millimeter-wave radar: A new path to the popularization of smart driving[EB/OL]. https://xueqiu.com/3161724413/247489207, 2023.
|
[2] |
LI Gang, SIT Y L, MANCHALA S, et al. Novel 4D 79 GHz radar concept for object detection and active safety applications[C]. The 2019 12th German Microwave Conference(GeMiC), Stuttgart, Germany, 2019: 87–90.
|
[3] |
QIAN Kun, HE Zhaoyuan, and ZHANG Xinyu. 3D point cloud generation with millimeter-wave radar[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2020, 4(4): 148. doi: 10.1145/3432221
|
[4] |
ENGELS F, HEIDENREICH P, WINTERMANTEL M, et al. Automotive radar signal processing: Research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 865–878. doi: 10.1109/JSTSP.2021.3063666
|
[5] |
林凤泰, 严蘋蘋, 张慧, 等. 基于最近迭代点的毫米波雷达点云数据处理方法[J]. 信号处理, 2023, 39(2): 288–297. doi: 10.16798/j.issn.1003-0530.2023.02.010
LIN Fengtai, YAN Pinpin, ZHANG Hui, et al. Iterative closest point method for point cloud data processing of millimeter wave radar[J]. Journal of Signal Processing, 2023, 39(2): 288–297. doi: 10.16798/j.issn.1003-0530.2023.02.010
|
[6] |
WEISHAUPT F, APPENRODT N, TILLY J F, et al. PreCFAR gridmaps for automotive radar[C]. The 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 2022: 161–164. doi: 10.23919/EuRAD50154.2022.9784455.
|
[7] |
WEI Ziping, LI Bin, FENG Tao, et al. Area-based CFAR target detection for automotive millimeter-wave radar[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 2891–2906. doi: 10.1109/TVT.2022.3216013
|
[8] |
兰吕鸿康, 黄岩, 郑凯航, 等. 毫米波雷达自适应门限点云成像方法研究[J]. 信号处理, 2022, 38(10): 2009–2020. doi: 10.16798/j.issn.1003-0530.2022.10.002
LAN Lühongkang, HUANG Yan, ZHENG Kaihang, et al. Research on adaptive threshold point cloud imaging method of millimeter-wave radar[J]. Journal of Signal Processing, 2022, 38(10): 2009–2020. doi: 10.16798/j.issn.1003-0530.2022.10.002
|
[9] |
DANZER A, GRIEBEL T, BACH M, et al. 2D car detection in radar data with pointnets[C]. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019: 61–66.
|
[10] |
JIN Feng, SENGUPTA A, CAO Siyang, et al. Mmwave radar point cloud segmentation using GMM in multimodal traffic monitoring[C]. 2020 IEEE International Radar Conference(RADAR), Washington, USA, 2020: 732–737.
|
[11] |
XU Fenglei, WANG Huan, HU Bingwen, et al. Road boundaries detection based on modified occupancy grid map using millimeter-wave radar[J]. Mobile Networks and Applications, 2020, 25(4): 1496–1503. doi: 10.1007/s11036-019-01378-5
|
[12] |
JIN Yi, PROPHET R, DELIGIANNIS A, et al. Point-cloud-based road course estimation on automotive radar data[C]. 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 2021: 29–34.
|
[13] |
CHENG Yuwei, SU Jingran, CHEN Hongyu, et al. A new automotive radar 4D point clouds detector by using deep learning[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 8398–8402. 2.
|
[14] |
CHENG Yuwei, SU Jingran, JIANG Mengxin, et al. A novel radar point cloud generation method for robot environment perception[J]. IEEE Transactions on Robotics, 2022, 38(6): 3754–3773. doi: 10.1109/TRO.2022.3185831
|
[15] |
JIANG Mengjie, XU Gang, PEI Hao, et al. 4D high-resolution imagery of point clouds for automotive mmWave radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2023.
|
[16] |
FRANCESCHI R and RACHKOV D. Deep learning-based radar detector for complex automotive scenarios[C]. 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 2022: 303–308.
|
[17] |
TAN Bin, MA Zhixiong, ZHU Xichan, et al. 3-D object detection for multiframe 4-D automotive millimeter-wave radar point cloud[J]. IEEE Sensors Journal, 2023, 23(11): 11125–11138. doi: 10.1109/JSEN.2022.3219643
|
[18] |
SUN Yue, HUANG Zhuoming, ZHANG Honggang, et al. 3DRIMR: 3D reconstruction and imaging via mmWave radar based on deep learning[C]. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, USA, 2021: 1–8.
|
[19] |
SUN Yue, ZHANG Honggang, HUANG Zhuoming, et al. DeepPoint: A deep learning model for 3D reconstruction in point clouds via mmWave radar[J]. arXiv: 2109.09188, 2021.
|
[20] |
HUANG Yan, ZHANG Hui, GUO Kunpeng, et al. Density-based vehicle detection approach for automotive millimeter-wave radar[C]. The 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020: 534–537.
|
[21] |
DREHER M, ERÇELIK E, BÄNZIGE T, et al. Radar-based 2D car detection using deep neural networks[C]. The 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020: 1–8.
|
[22] |
XU Baowei, ZHANG Xinyu, WANG Li, et al. RPFA-Net: A 4D RaDAR pillar feature attention network for 3D object detection[C]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA, 2021: 3061–3066.
|
[23] |
LANG A H, VORA S, CAESAR H, et al. PointPillars: Fast encoders for object detection from point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 12689–12697.
|
[24] |
MEYER M and KUSCHK G. Automotive radar dataset for deep learning based 3D object detection[C]. The 2019 16th European Radar Conference (EuRAD), Paris, France, 2019: 129–132.
|
[25] |
OUAKNINE A, NEWSON A, REBUT J, et al. CARRADA dataset: Camera and automotive radar with range-angle-Doppler annotations[C]. The 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 5068–5075.
|
[26] |
CAESAR H, BANKITI V, LANG A H, et al. NuScenes: A multimodal dataset for autonomous driving[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11618–11628.
|
[27] |
KRAMER A, HARLOW K, WILLIAMS C, et al. ColoRadar: The direct 3D millimeter wave radar dataset[J]. International Journal of Robotics Research, 2022, 41(4): 351–360. doi: 10.1177/02783649211068535
|
[28] |
WANG Yizhou, JIANG Zhongyu, LI Yudong, et al. RODNet: A real-time radar object detection network cross-supervised by camera-radar fused object 3D localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 954–967. doi: 10.1109/JSTSP.2021.3058895
|
[29] |
BIJELIC M, GRUBER T, MANNAN F, et al. Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11679–11689.
|
[30] |
PALFFY A, POOL E, BARATAM S, et al. Multi-class road user detection with 3+1D radar in the View-of-Delft dataset[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4961–4968. doi: 10.1109/LRA.2022.3147324
|
[31] |
PAEK D H, KONG S H, and WIJAYA K T. K-Radar: 4D radar object detection for autonomous driving in various weather conditions[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 3819–3829.
|
[32] |
SCHUMANN O, HAHN M, SCHEINER N, et al. RadarScenes: A real-world radar point cloud data set for automotive applications[C]. The 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 2021: 1–8.
|
[33] |
ZHENG Lianqing, MA Zhixiong, ZHU Xichan, et al. TJ4DRadSet: A 4D radar dataset for autonomous driving[C]. The 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 493–498.
|
[34] |
MEYER M and KUSCHK G. Deep learning based 3D object detection for automotive radar and camera[C]. The 2019 16th European Radar Conference (EuRAD), Paris, France, 2019: 133–136.
|
[35] |
NABATI R and QI Hairong. RRPN: Radar region proposal network for object detection in autonomous vehicles[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 3093–3097.
|
[36] |
JHA H, LODHI V, and CHAKRAVARTY D. Object detection and identification using vision and radar data fusion system for ground-based navigation[C]. The 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019: 590–593.
|
[37] |
NOBIS F, GEISSLINGER M, WEBER M, et al. A deep learning-based radar and camera sensor fusion architecture for object detection[J]. 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 2019: 1–7.
|
[38] |
CUI Hang, WU Junzhe, ZHANG Jiaming, et al. 3D detection and tracking for on-road vehicles with a monovision camera and dual low-cost 4D mmWave radars[C]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA, 2021: 2931–2937.
|
[39] |
NABATI R and QI Hairong. Centerfusion: Center-based radar and camera fusion for 3D object detection[C]. 2021 IEEE Winter Conference on Applications of Computer Vision(WACV), Waikoloa, USA, 2021: 1526–1535.
|
[40] |
JOHN V, NITHILAN M K, MITA S, et al. So-Net: Joint semantic segmentation and obstacle detection using deep fusion of monocular camera and radar[C]. Pacific-Rim Symposium on Image and Video Technology (PSIVT), Sydney, Australia, 2020: 138–148.
|
[41] |
CHANG Shuo, ZHANG Yifan, ZHANG Fan, et al. Spatial attention fusion for obstacle detection using mmWave radar and vision sensor[J]. Sensors, 2020, 20(4): 956. doi: 10.3390/s20040956
|
[42] |
BANSAL K, RUNGTA K, and BHARADIA D. RadSegNet: A reliable approach to radar camera fusion[J]. arXiv: 2208.03849, 2022.
|
[43] |
LO C C and VANDEWALLE P. RCDPT: Radar-camera fusion dense prediction transformer[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5.
|
[44] |
WU Zizhang, CHEN Guilian, GAN Yuanzhu, et al. MVFusion: Multi-view 3D object detection with semantic-aligned radar and camera fusion[C]. 2023 IEEE International Conference on Robotics and Automation, London, UK, 2023: 2766–2773.
|
[45] |
SENGUPTA A, CHENG Lei, and CAO Siyang. Robust multiobject tracking using mmwave radar-camera sensor fusion[J]. IEEE Sensors Letters, 2022, 6(10): 5501304. doi: 10.1109/LSENS.2022.3213529
|
[46] |
ZHOU Taohua, JIANG Kun, WANG Sijia, et al. 3D multiple object tracking with multi-modal fusion of low-cost sensors for autonomous driving[C]. The 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 1750–1757.
|
[47] |
BAI Jie, LI Sen, HUANG Libo, et al. Robust detection and tracking method for moving object based on radar and camera data fusion[J]. IEEE Sensors Journal, 2021, 21(9): 10761–10774. doi: 10.1109/JSEN.2021.3049449
|
[48] |
SENGUPTA A, YOSHIZAWA A, and CAO Siyang. Automatic radar-camera dataset generation for sensor-fusion applications[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2875–2882. doi: 10.1109/LRA.2022.3144524
|
[49] |
DONG Xu, ZHUANG Binnan, MAO Yunxiang, et al. Radar camera fusion via representation learning in autonomous driving[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, USA, 2021: 1672–1681.
|
[50] |
FEIL P, KRAUS T, and MENZEL W. Short range mm-Wave SAR for surveillance and security applications[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
|
[51] |
IQBAL H, SAJJAD M B, MUELLER M, et al. SAR imaging in an automotive scenario[C]. The 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 2015: 1–4.
|
[52] |
JIANG Chenghao, TANG Shiyang, ZHANG Linrang, et al. Real data imaging approach design for automotive SAR experiments[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 386–388.
|
[53] |
XU Gang, PEI Hao, JIANG Mengjie, et al. High-resolution mmWave SAR imagery for automotive parking assistance[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2023, 4(1): 54–61. doi: 10.1109/JMASS.2022.3226771
|
[54] |
WU Huaming and ZWICK T. Automotive SAR for parking lot detection[C]. 2009 German Microwave Conference, Munich, Germany, 2009: 1–8.
|
[55] |
GUMBMANN F, TRAN H P, WEINZIERL J, et al. Optimization of a fast scanning millimetre-wave short range SAR imaging system[C]. 2007 European Radar Conference, Munich, Germany, 2007: 24–27.
|
[56] |
SRIHARSHA NAG T S, VANDANA G S, PARDHASARADHI B, et al. SAR imaging with automotive radar: Range migration algorithm, experiment, and future directions in automotive vehicle[C]. The 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Mangalore, India, 2022: 382–387.
|
[57] |
ZHANG Yan, ZHAO Jie, ZHANG Bingchen, et al. RMA-based azimuth-range decouple method for automotive SAR sparse imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3480–3492. doi: 10.1109/TAES.2022.3226161
|
[58] |
LEE S, JUNG Y, LEE M, et al. Compressive sensing-based SAR image reconstruction from sparse radar sensor data acquisition in automotive FMCW radar system[J]. Sensors, 2021, 21(21): 7283. doi: 10.3390/s21217283
|
[59] |
IQBAL H, SCHARTEL M, ROOS F, et al. Implementation of a SAR demonstrator for automotive imaging[C]. The 2018 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 2018: 240–243.
|
[60] |
ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
|
[61] |
GISDER T, HARRER F, and BIEBL E. Application of a stream-based SAR-backprojection approach for automotive environment perception[C]. The 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–10.
|
[62] |
FARHADI M, FEGER R, FINK J, et al. Adaption of fast factorized back-projection to automotive SAR applications[C]. The 2019 16th European Radar Conference (EuRAD), Paris, France, 2019: 261–264.
|
[63] |
FARHADI M, FEGER R, FINK J, et al. Synthetic aperture radar imaging of moving targets for automotive applications[C]. The 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 2022: 453–456.
|
[64] |
MANZONI M, TEBALDINI S, MONTI-GUARNIERI A V, et al. Multipath in automotive MIMO SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202612. doi: 10.1109/TGRS.2023.3240705
|
[65] |
RIZZI M, MANZONI M, TEBALDINI S, et al. Multi-beam automotive SAR imaging in urban scenarios[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6.
|
[66] |
WRIGHT D, GISHKORI S, DANIEL L, et al. Adaptive integration time in automotive SAR[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
|
[67] |
TAGLIAFERRI D, RIZZI M, TEBALDINI S, et al. Cooperative synthetic aperture radar in an urban connected car scenario[C]. The 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 2021: 1–4.
|
[68] |
FEGER R, HADERER A, and STELZER A. Experimental verification of a 77-GHz synthetic aperture radar system for automotive applications[C]. 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 2017: 111–114.
|
[69] |
TAGLIAFERRI D, RIZZI M, NICOLI M, et al. Navigation-aided automotive SAR for high-resolution imaging of driving environments[J]. IEEE Access, 2021, 9: 35599–35615. doi: 10.1109/ACCESS.2021.3062084
|
[70] |
WU Huaming and ZWICK T. A novel motion compensation algorithm for automotive SAR: Simulations and experiments[C]. German Microwave Conference Digest of Papers, Berlin, Germany, 2010: 222–226.
|
[71] |
WU Huaming, ZWIRELLO L, LI Xuyang, et al. Motion compensation with one-axis gyroscope and two-axis accelerometer for automotive SAR[C]. 2011 German Microwave Conference, Darmstadt, Germany, 2011: 1–4.
|
[72] |
IQBAL H, LÖFFLER A, MEJDOUB M N, et al. Realistic SAR implementation for automotive applications[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 306–309.
|
[73] |
STEINER M, GREBNER T, and WALDSCHMIDT C. Millimeter-wave SAR-imaging with radar networks based on radar self-localization[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4652–4661. doi: 10.1109/TMTT.2020.2995225
|
[74] |
FARHADI M, FEGER R, FINK J, et al. Phase error estimation for automotive SAR[C]. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Linz, Austria, 2020: 1–4.
|
[75] |
FARHADI M, FEGER R, FINK J, et al. Space-variant phase error estimation and correction for automotive SAR[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 310–313.
|
[76] |
MANZONI M, RIZZI M, TEBALDINI S, et al. Residual motion compensation in automotive MIMO SAR imaging[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–7.
|
[77] |
MANZONI M, TAGLIAFERRI D, RIZZI M, et al. Motion estimation and compensation in automotive MIMO SAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1756–1772. doi: 10.1109/TITS.2022.3219542
|
[78] |
HU Ruizhi, RAO B S M R, MURTADA A, et al. Automotive squint-forward-looking SAR: High resolution and early warning[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 904–912. doi: 10.1109/JSTSP.2021.3064175
|
[79] |
WANG Jianqiu, LIU Kang, LIU Qingping, et al. Azimuth improved radar imaging with virtual array in the forward-looking sight[J]. IEEE Internet of Things Journal, 2022, 9(19): 18867–18879. doi: 10.1109/JIOT.2022.3163163
|
[80] |
GISHKORI S, WRIGHT D, DANIEL L, et al. Imaging moving targets for a forward-scanning automotive SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(2): 1106–1119. doi: 10.1109/TAES.2019.2925446
|
[81] |
GAO Xiangyu, ROY S, and XING Guanbin. MIMO-SAR: A hierarchical high-resolution imaging algorithm for mmWave FMCW radar in autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7322–7334. doi: 10.1109/TVT.2021.3092355
|
[82] |
ZHANG Bangjie, XU Gang, ZHOU Rui, et al. Multi-channel back-projection algorithm for mmWave automotive MIMO SAR imaging with Doppler-division multiplexing[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(2): 445–457. doi: 10.1109/JSTSP.2022.3207902
|
[83] |
FARHADI M, FEGER R, FINK J, et al. Automotive synthetic aperture radar imaging using TDM-MIMO[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–6.
|
[84] |
SOMMER A, NGO T T, and OSTERMANN J. 3D multiple input single output near field automotive synthetic aperture radar[C]. The 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–10.
|
[85] |
TEBALDINI S, MANZONI M, TAGLIAFERRI D, et al. Sensing the urban environment by automotive SAR imaging: Potentials and challenges[J]. Remote Sensing, 2022, 14(15): 3602. doi: 10.3390/rs14153602
|
[86] |
MANZONI M, TEBALDINI S, MONTI-GUARNIERI A V, et al. A comparison of processing schemes for automotive MIMO SAR imaging[J]. Remote Sensing, 2022, 14(19): 4696. doi: 10.3390/rs14194696
|
[87] |
TEBALDINI S, RIZZI M, MANZONI M, et al. SAR imaging in automotive scenarios[C]. 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 2022: 1–5.
|
[88] |
ALBABA A, SAKHNINI A, SAHLI H, et al. Forward-looking MIMO-SAR for enhanced angular resolution[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6.
|
[89] |
ALBABA A, BAUDUIN M, SAHLI H, et al. Low-complexity forward-looking volumetric SAR for high resolution 3-D radar imaging[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6.
|
[90] |
HAKOBYAN G and YANG Bin. High-performance automotive radar: A review of signal processing algorithms and modulation schemes[J]. IEEE Signal Processing Magazine, 2019, 36(5): 32–44. doi: 10.1109/MSP.2019.2911722
|
[91] |
ALLAND S, STARK W, ALI M, et al. Interference in automotive radar systems: Characteristics, mitigation techniques, and current and future research[J]. IEEE Signal Processing Magazine, 2019, 36(5): 45–59. doi: 10.1109/MSP.2019.2908214
|
[92] |
XU Zhihuo. Bi-level l1 optimization-based interference reduction for millimeter wave radars[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 728–738. doi: 10.1109/TITS.2022.3215636
|
[93] |
KIM Y. Identification of FMCW radar in mutual interference environments using frequency ramp modulation[C]. The 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–3.
|
[94] |
KITSUKAWA Y, MITSUMOTO M, MIZUTANI H, et al. An interference suppression method by transmission chirp waveform with random repetition interval in fast-chirp FMCW radar[C]. The 2019 16th European Radar Conference (EuRAD), Paris, France, 2019: 165–168.
|
[95] |
BECHTER J, SIPPEL C, and WALDSCHMIDT C. Bats-inspired frequency hopping for mitigation of interference between automotive radars[C]. 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, USA, 2016: 1–4.
|
[96] |
HOSSAIN A, ELSHAFIEY I, and AL-SANIE A. Mutual interference mitigation in automotive radars under realistic road environments[C]. The 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 2017: 895–900.
|
[97] |
LUO Tangnian, WU C H E, and CHEN Y J E. A 77-GHz CMOS automotive radar transceiver with anti-interference function[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(12): 3247–3255. doi: 10.1109/TCSI.2013.2265974
|
[98] |
YANG Xiaokang, ZHANG Kunfan, WANG Ting, et al. Anti-interference waveform design for automotive radar[C]. The 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2017: 14–17.
|
[99] |
UYSAL F. Phase-coded FMCW automotive radar: System design and interference mitigation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 270–281. doi: 10.1109/TVT.2019.2953305
|
[100] |
LIU T H, HSU M L, and TSAI Z M. Mutual interference of pseudorandom noise radar in automotive collision avoidance application at 24 GHz[C]. The 2016 IEEE 5th Global Conference on Consumer Electronics, Kyoto, Japan, 2016: 1–2.
|
[101] |
XU Zhihuo and SHI Quan. Interference mitigation for automotive radar using orthogonal noise waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 137–141. doi: 10.1109/LGRS.2017.2777962
|
[102] |
HAKOBYAN G, ARMANIOUS K, and YANG Bin. Interference-aware cognitive radar: A remedy to the automotive interference problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2326–2339. doi: 10.1109/TAES.2019.2947973
|
[103] |
BASIREDDY A and MORADI H. OFDM waveform design for interference resistant automotive radars[J]. IEEE Sensors Journal, 2021, 21(14): 15670–15678. doi: 10.1109/JSEN.2021.3057119
|
[104] |
BOURDOUX A and BAUDUIN M. PMCW waveform cross-correlation characterization and interference mitigation[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 164–167.
|
[105] |
KHOURY J, RAMANATHAN R, MCCLOSKEY D, et al. RadarMAC: Mitigating radar interference in self-driving cars[C]. The 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, UK, 2016: 1–9.
|
[106] |
MAZHER K U, HEATH R W, GULATI K, et al. Automotive radar interference characterization and reduction by partial coordination[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
|
[107] |
AYDOGDU C, GARCIA N, HAMMARSTRAND L, et al. Radar communications for combating mutual interference of FMCW radars[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6.
|
[108] |
AYDOGDU C, KESKIN M F, GARCIA N, et al. RadChat: Spectrum sharing for automotive radar interference mitigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 416–429. doi: 10.1109/TITS.2019.2959881
|
[109] |
AYDOGDU C, KESKIN M F, and WYMEERSCH H. Automotive radar interference mitigation via multi - hop cooperative radar communications[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 270–273.
|
[110] |
JIN Feng and CAO Siyang. Automotive radar interference mitigation using adaptive noise canceller[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3747–3754. doi: 10.1109/TVT.2019.2901493
|
[111] |
WAGNER M, SULEJMANI F, MELZER A, et al. Threshold-free interference cancellation method for automotive FMCW radar systems[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–4.
|
[112] |
BECHTER J, EID K, ROOS F, et al. Digital beamforming to mitigate automotive radar interference[C]. 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, USA, 2016: 1–4.
|
[113] |
ARTYUKHIN I, ERMOLAEV V, FLAKSMAN A, et al. Development of effective anti-interference primary signal processing for mmWave automotive radar[C]. 2019 International Conference on Engineering and Telecommunication (EnT), Dolgoprudny, Russia, 2019: 1–5.
|
[114] |
BECHTER J, RAMEEZ M, and WALDSCHMIDT C. Analytical and experimental investigations on mitigation of interference in a DBF MIMO radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1727–1734. doi: 10.1109/TMTT.2017.2668404
|
[115] |
RAMEEZ M, DAHL M, and PETTERSSON M I. Adaptive digital beamforming for interference suppression in automotive FMCW radars[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 252–256.
|
[116] |
NOZAWA T, MAKINO Y, TAKAYA N, et al. An anti-collision automotive FMCW radar using time-domain interference detection and suppression[C]. International Conference on Radar Systems (Radar 2017), Belfast, Ireland, 2017: 1–5.
|
[117] |
BARJENBRUCH M, KELLNER D, DIETMAYER K, et al. A method for interference cancellation in automotive radar[C]. 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Heidelberg, Germany, 2015: 1–4.
|
[118] |
CHOI J H, LEE H B, CHOI J W, et al. Mutual interference suppression using clipping and weighted-envelope normalization for automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2016, E99.B(1): 280–287. doi: 10.1587/transcom.2015EBP3152
|
[119] |
BECHTER J, ROOS F, RAHMAN M, et al. Automotive radar interference mitigation using a sparse sampling approach[C]. 2017 European Radar Conference (EURAD), Nuremberg, Germany, 2017: 90–93.
|
[120] |
UMEHIRA M, NOZAWA T, MAKINO Y, et al. A novel iterative inter-radar interference reduction scheme for densely deployed automotive FMCW radars[C]. The 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–10.
|
[121] |
NEEMAT S, KRASNOV O, and YAROVOY A. An interference mitigation technique for FMCW radar using beat-frequencies interpolation in the STFT domain[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 1207–1220. doi: 10.1109/TMTT.2018.2881154
|
[122] |
LIU Zhenyu, LU Wei, WU Jiayan, et al. A PELT-KCN algorithm for FMCW radar interference suppression based on signal reconstruction[J]. IEEE Access, 2020, 8: 45108–45118. doi: 10.1109/ACCESS.2020.2977098
|
[123] |
JUNG J, LIM S, KIM J, et al. Interference suppression and signal restoration using kalman filter in automotive radar systems[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 726–731.
|
[124] |
ALHUMAIDI M and WINTERMANTEL M. Interference avoidance and mitigation in automotive radar[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 172–175.
|
[125] |
WANG Jianping. CFAR-based interference mitigation for FMCW automotive radar systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12229–12238. doi: 10.1109/TITS.2021.3111514
|
[126] |
WANG Jianping, DING Min, and YAROVOY A. Matrix-pencil approach-based interference mitigation for FMCW radar systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 5099–5115.
|
[127] |
RAMEEZ M, DAHL M, and PETTERSSON M I. Autoregressive model-based signal reconstruction for automotive radar interference mitigation[J]. IEEE Sensors Journal, 2021, 21(5): 6575–6586. doi: 10.1109/JSEN.2020.3042061
|
[128] |
FEI Tai, GUANG Honghao, SUN Yuliang, et al. An efficient sparse sensing based interference mitigation approach for automotive radar[C]. The 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 274–277.
|
[129] |
YANG Shuai and SHANG Xiaolei. Iterative approaches to interference mitigation for automotive radar[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–5.
|
[130] |
UYSAL F and SANKA S. Mitigation of automotive radar interference[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 405–410.
|
[131] |
WU Jiayan, YANG Siyuan, LU Wei, et al. Iterative modified threshold method based on EMD for interference suppression in FMCW radars[J]. IET Radar, Sonar & Navigation, 2020, 14(8): 1219–1228. doi: 10.1049/iet-rsn.2020.0092
|
[132] |
LEE S, LEE J Y, and KIM S C. Mutual interference suppression using wavelet denoising in automotive FMCW radar systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 887–897. doi: 10.1109/TITS.2019.2961235
|
[133] |
CORREAS-SERRANO A and GONZALEZ-HUICI M A. Sparse reconstruction of chirplets for automotive FMCW radar interference mitigation[C]. 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Detroit, USA, 2019: 1–4.
|
[134] |
WANG Jianping, DING Min, and YAROVOY A. Interference mitigation for FMCW radar with sparse and low-rank hankel matrix decomposition[J]. IEEE Transactions on Signal Processing, 2022, 70: 822–834. doi: 10.1109/TSP.2022.3147863
|
[135] |
LIU Zhenyu, WU Jiayan, YANG Siyuan, et al. DOA estimation method based on EMD and MUSIC for mutual interference in FMCW automotive radars[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3504005. doi: 10.1109/LGRS.2021.3058729
|
[136] |
XU Zhihuo and YUAN Min. An interference mitigation technique for automotive millimeter wave radars in the tunable Q-factor wavelet transform domain[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(12): 5270–5283. doi: 10.1109/TMTT.2021.3121322
|
[137] |
LEE W H and LEE S. Geometric sequence decomposition-based interference cancellation in automotive radar systems[J]. IEEE Access, 2022, 10: 4318–4327. doi: 10.1109/ACCESS.2022.3141543
|
[138] |
WANG Yunxuan, HUANG Yan, WEN Cai, et al. Mutual interference mitigation for automotive FMCW radar with time and frequency domain decomposition[J]. IEEE Transactions on Microwave Theory and Techniques.
|
[139] |
MUN J, KIM H, and LEE J. A deep learning approach for automotive radar interference mitigation[C]. The 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018: 1–5.
|
[140] |
ROCK J, TOTH M, MESSNER E, et al. Complex signal denoising and interference mitigation for automotive radar using convolutional neural networks[C]. The 2019 22th International Conference on Information Fusion (FUSION), Ottawa, Canada, 2019: 1–8.
|
[141] |
MUN J, HA S, and LEE J. Automotive radar signal interference mitigation using RNN with self attention[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 3802–3806.
|
[142] |
RISTEA N C, ANGHEL A, and IONESCU R T. Fully convolutional neural networks for automotive radar interference mitigation[C]. The 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–5.
|
[143] |
FUCHS J, DUBEY A, LÜBKE M, et al. Automotive radar interference mitigation using a convolutional autoencoder[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 315–320.
|
[144] |
ROCK J, ROTH W, TOTH M, et al. Resource-efficient deep neural networks for automotive radar interference mitigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 927–940. doi: 10.1109/JSTSP.2021.3062452
|